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NUCLEAR MAGNETIC SPIN~RUTATIONAL
RELAXATION TIMES FOR.SYMMETRIC MOLECULES

James ¥z2Connz1l

DubLin Institute for Advarced Studies

iblin 4. Trela d

It is shown that the problem of calculating
times related to nuclear magnetic spin-rotational inter-
actions may be solved for the symmetric rotator model of
a molecule by employing the method already proposed in a
general manner for asymnetric molecules that undergo
rotational thermal motion. Expressions are derived for
the spin-rotational correlation time and for the contributions
arising from spin-rotational interactions to the longitudinal

and transverse relaxation times.

1. INTRODUCTION
A general analytical method of calculating nuclear magnetic
relaxation times resulting from spin-rotational interactions has been

based on the stochastic rotation operator and on the solution of stochastic

differential equationsl). The method is applicable in principle to mole-

cules with no special symmetry which are subject to rotational thermal
motion, but a thorough examination of this problem is hampered by the

relatively low order of approximation to which calculations on the

rotational Brownian motion of asymmetric bodies have so far been takenz).
1 . 1,3,4,5)
he precblem has already been solved for spherical molecules f In
the present paper the case of symmetric top molecules is examined. The

results are true for a molecule which has a principal axis of inertia
through the cenire of mass that passes through the nucleus in which we are
. . o R . 7
interested, and such that this principal axis is an axis of symmetry (_
~o

for the molecule with m7 36).



2. GENERAL EQUATICNS

We consider nuclei in a rotating molecule denoting by J_‘. the
A

spin operator of the ith nucleus and by e J—‘: the angular momentum of the
-

\

3 . . . . . .
molecule™’. The spin-rotaticnal Hamiltonian of the ith nucleus

'
N .
LW L
where (_, is a dyadic. Ifr with/u_ y=1, 2, 3 are the cartesien
o~ . ALY ’
components of C in the molecular frame of cocrdinites, which is taken
~

n the directions of the principal axes of inert'a through the centre of

B

mAss, we write

=1
K
D

L5 Ly

! A,yq ==/
ot mf -
where z/: are the spherical components of ,«'!'5 in the lsboratory system
and
3 ! .
LS AR L \
Ut=2 2 4,068,700 ],
c 557 maed V ‘{ ” Ly
e ¥
g being the rotation matrlx for the transfornation «f a spherical
Lin

tensor and d\ /7 \/;. the Lular angles specilying +<he molecular system

with reference to the lzbeoratory system of ccordirztas.

()

(23

-~

To introduce the various relaxation times we define ( {(’) by
b(»

C% - <V Ui,

(72

where the angular brackets denote ensemble average for thermal equilibrium.
do

7)

0 .
The Laplace transform v(._ !,;s) of (C) is expressible by
e N

("‘,@A@

M n*"/

J < Qo).

(\/Iw

) 1
$) T 9o
i =

In this I'“) J.y are the moments of inertia about the moleculavju - and

3 - axes, and &Jﬂ(f)‘wvw) the corresponding components of angular

. N . C' . [ )

velocity of the molecule at times and zero, respectively. !\,{«_} is
the rotation operator that brings the molecular frame at time zero to its
at time t .

orientation The subscripts vil ,=ra signify the N ,=m ==

/
matrix element with respect to the basis (' {(5/0), 0'\/&)) . \m([lwl,x,m)a

\( (ﬁ/O) Ato) ) , the oller, ﬁ(o) being two of the sbove mentioned
Fuler angles at time zero.

The contributions (3/7:)' > 6/7-—,_ ),

interactions to the reciprocals I/T’ . f/T of the longitudinal and

from the spin-rotational

 transverse relaxation times are given by

[ T L
T2 (3

where (J, is the anguler velocity of the Larmor precession and

T ,/w) = ;_ (C {(~iw) + C icw))
i

(3
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In the representation employed in eq. (3) v
r 1 [

. 10 -1 0

W, ¢ _

cm% /0 \_ ) @yu a0 ] Lw“ 5 0 b‘ s (12)
o /0 o 1 0 ,

we heve

which clearly satisfy (1C). - From (12) we deduce that

7113 0 ‘: L -1 .

@ ¢ I o R S ol
H o 7 e 70 ,.qu %
.ﬁv = a0 4 Lo Do

oo 0 ~% o] £ o -7

=i=t : T = —_— =z
H.Mwn w0 =% s,\wMu 0 0 Q‘vk_hu .W 1o «.W (13)

Lo 0 . O % o, L0 -L

e -2
cﬂ T .~_ -+ ”\_w = &.

)g\

'We take the axis of symmetry of the molecule to be the third coordinate

axis and then

Mn..,. H. q.%w uﬁw\ , QVP n@\v : )

DY

R 0 D \_

0

e w.whv

]

-/

pe

. which is a diagonal matrix but in general not just a multiple of the

identity matrix.

oC
We now proceed to find h.r.mo. from (3) and (8), employing th
-
results (12) (15). In subsection 4.4 of ref. 1 it was found that the
UW p "terms of (8) gave rise to calculational difficulties, so let us

consider these first of zil.

3
/
o amr—
ST g M
.\\9(.,&

From (3)

[
IRDISVANA
pA TR apTm
™ =t
We take the 9 differ

nt combinations of
, nat My v

summations over w and an  for the

v=3.

. m.xmavwm. take \x.nN
I3

. m3

“3%33, L) P
B 1)

u..\r uv “terms of (8).

This gives a contribution

JA[EeY- 1681
...%. + 84 mwuw..viw .

2

i { m@&»\@hc&ﬂw &v . (1)

Let us, for

(15)

=

separately and perform the

(17)

Since the third axis is the axis of m%asmﬁ.fgm components of the dyadic
.

[y
. N - . 10
m. in the molecular frame satisfy )
r



—8-
(.6 CoC(
(’;;, 0. (p#9/

We then deduce from (2) that

,@j,,t;é AR T A
A A0, .- C,

(18)

Let us consider

S Al (133(‘44“1)"%)%. (i)

mon=-l

.

Since, by (13) and (15),
o y . " 0 o 0
J;J;(-La +al_> T L@.*?)?M)” O (D,»L??;»\a,)”
o 9] 9]

the sum (19) is equal to
ﬂ /é) /Q l
( Yoz ’% ’r»“ .;3

2 (], "@ v a)

. = . 9 K T 7
which venishes by (.8). Taxking @ succesuivelr equel wo i'/} ZZ;) 5). ) ""‘gg

we dedvece thet (17) varishes. It may s’milarly e showa fcr sll

oOF ; #nd Vv that

(20)

/A=

iyl (g * ;q i
j}».}. ,We LL“LC"“C’?

Ther "oy putting ¢ :u"cvs:uelj eoual To A, on
I N N B : 3 * f
tororibution to 4 JQ}

18 :T ..:
B i

! From ' a0

even before the summation over Ao Y is carried out.

The contribution to C’,u;lo) from the first term on the right hand
LY 1

side of . (8),

3 / i ; (’D;"" ])3+ B")J f 9] 9]
/5;;«. > L Z (- fw/g‘ ,@ o 2D+3.)" o
A= mynz-l D D ﬁ)‘*)’)f,g,)"
n

J

~h

3f -'; -—//‘XD”’/D?'* A
+4;a;&a+a>0

u&%’ﬁ

,L{WQZ'C: 'i"“‘"”-“—"‘I;(,‘/ »
2° D+ D + 5, sz, + E; (21)

by (18).
The other terms in (8) that give a-contribution to CZ\;O/ are
o\t : =
rroportional to (/& i ) and they include no term proportional to (-G-»‘-S‘l )
~ @ -
—— 253
Morcover they are correct only to order //ﬁ l) /(I g’)‘where for the
moment - we suppress the suffixes of I and B . We may therefore replace
~!
/—.C.} qr) in them by Q@ ’Z .

s i N . ; : oo
the contribution to Coani o oo
R SO

.
(.

f

This contribution is £
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T 2 iy /
kl\ ﬂl Mﬂl.mw f'\\nl./«ll.,.l, mopt S
s w_,«:m.. (o gm0 6, 4 (L),

1Y _m«f\‘,m,w\.&y\&p S2l))
Rl g Nt A

VA P o - o i P 3
: ﬁu L - .~ 7, ﬁ\_n.!lx! i 2 N“ { n
e i s e (e €
2 S 1.B5+8) T RE (5+8))
(22)

Similarly it is deduced that the last m% ~ternm in (8} givesia

LEd
contribution
— B S — -
22TV C(1-1,)
3%°LL BC(Y 4 B) e

Of the two tzrms proportional to N\N vy
4

is approximated for ¢z ) by

\\N..N.\.:m\u. me<v \H;\;%N‘? Nc -1 7
— - I«.MV': \||. + IA
h\ \m % Dac 4 Ee )..w.. +Be b

For ‘the sum of the combinations \K«N , v ® 5 and =iy w2 T

yields

M\.ﬂ ?zmt mm
%'N.Wﬁwﬂ.ﬁw v

Similarly for the combinations xﬁ = w, » ¥ve/ and \aa\ » .vxw

gives

2/ pTC G (1-1 v

e e e A

3 AT B s :w m

and for x\c (s Y=o mna\,nN..\n \
| el (T~ 1,)

38T, B (B43,)

on summing (25), (26) and (27) we obtain

\mqvﬁ nz.\w; M. M ﬂH\s\NJI .tt\N.....
W\MHWwa__:w}U W(W\S;*Wﬁ.f v..... VT.

myn et

b (AT 3 C. .G

(25)

(24)

.m dJ¢

iy o

{28)

, ma Bs) 1B, - M.mw V

Proceeding in the same way we find that the contribution of the remaining

term in (8) to M.: \o\ is m:ms by

¢ .
¢ J RN \f
_M ¥ \c..s‘.\ A WM.. M\.x...wcv?a?

(28]



On collecting our results from (21) -~ (22), (28), (29) we
conclude that

,QT{ 210 TG

3%1 (B.+ -Dr +D3 _\’B;'”f 7,7)1

C?:ro)f

- 9. 27 - < (30)
4 [( R e ~ds .
5255 Tror)

L
24, (Gl +2CG)
* 7,88 (5 + R,) U

As a check on this result we examine what it reduces to when the

symmetric molecule is spherical. We put

1-3,-I , E-E-B

‘ AT
D =D, =D T,

3

by (ll))and write P/B = 'ng/:_L 'Bl) < )/ Then (}30) beconizs

-

bl

T

e 2
00 «5, [ ?. ¢y C, 9 Wt SR R =
Cic'{a‘) * ;%{)"E { /+;a, T /,,‘.2)/ '+y (‘)(-l+ Il + ’2(;—(”)}

AT (26 Oy (G-GY

We see from (6) that this agrees in the approximation of the present

paper with the result of direct calculationll>.

'

-13-

4. SPIN-ROTATIONAL CORRELATION TIMES
Equation (30) leads immediately to expressions for spin-rotational
correlation times. For the extreme narrowing case we have from (6) that
=y < z
. %1{ 21, (, I, G
7;"' 328 tB,—/—:D, "’?g Bg +2 DI
2 2 2
+’€LT[("@‘§ ¥ ﬂT', o ~ Ig )("
, jg B E; 1.B*( B+ B "l (31)
z
Ql_g(()” +2CL CN) ‘k}
I\g "Bg(gs” gg) :

It is possible to generalize this result so as to find (1 /7‘[) and (’/7;)[
‘

from (4) ‘and (5). ~ We see from eq. (3) that in order to do this we would
have to retain 5§ when employing (8) for the evaluation of C;;‘Zs) .
This would present no great difficulty but the calculations would be some=
what more complicated.
To find the spin-rotational correlation time from (7) we first
deduce from (18) that
3 ! = ¢ .
> D)4
/‘:, M,,{ ) _nu, {am, Zﬁ
B ¢ ¢ C - c\z
- L(-240 4L 240 ) + L)

X

= 21. (12 + z;‘(,/‘
It then follows that
v / é 27, (11 T
O ILGALG U B T

B 9 -
+zﬁ\T ,‘?A ,1—___:_2_];_,_. — <Ly kd
g,< 13’3 s =B, TB B+ B}))Q

213(424»3(1('”) }
T.BB (B +R) :




o] b

The general method of finding the coniributions to longitudinal

and transverse relaxation times evising from spin-rotational Interactions,

Ercvmnien motion, has been successfully aprlied to molecules with an axis
of rovaticnal symmetry. The calculations are possiblz because the terms

PR - . Dy )y N X N
in the' Laplace transformation of AM W/ﬁaww L, (C) nuv\ew\\ that had .caused

ifficelty for vanishing valuss of the parameter &, arve Tound to give zaro
P

fu

ontributions.

0

Thes spin-votational correlation time has alsc been

caleculared.
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