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(1 R

The Corrigan-Goddard (CG) Ansatz for n separated SU{2} monopeles in

static equilibrium ceatains n{n-2) conditions for n(n+2) parameters. in accord-
ance with the index theorem. - However the n(n-2) conditions are such that, in
general, 1t is not possible to solve them explicitly or to relate the indepen-

dent parameters directly to the physical properties of the system. For this
RINGS OF MONOPOLES WITH DISCRETE AXIAL SYMMETRY:

reason it may be of interest to simplify the conditions by imposing symmetries
EXPLICIT SOLUTION FOR N=3

on the systen.

The purpose of this note is to consider those symmetries that can be

)

{n
implemented by linear transformations of the Ward-Atiyah § -variable.'”’ Thess
By are the reflexions of the coerdinates x,y,= and the rotations ¥ around the

z-axis. However, since the group of continuous rotations around the axis does

(3)

i

not admit separated monopoles, only the discrete subgroups R where $=2T0/p

N
. =1+ kR will be considered. It is found that for Rn and Rn—l the CG con-
L. O'Raifeartaigh and S. Rouhani ditions simplify enormously and that, for Rn and small values of the parameters
at least, the system described is a (non-zero) ring of monopoles with equal
spacing. In particular for n=3 and R3 the CG conditions are automaticaily

Dublin Institute for Advanced Studies ' satisfied and there is an explicit solution (more precisely an explicit transi-
Dublin 4, Ireland ! tion matrix) which describes 3 equidistant monopoles. The fact that the
discrete axial symmetries Rk admit separated monopoles located at the discrete
angles of the group, throws some light% on the rather surprising earlier result(3)

. that continuous axial symmetry does not admit separated solutions, since the

continuum limit of an Rk system would require an infinite number of mononoles
!
on the ring ard hence an infinite energy.

Let us first recall the essential features of the C0-Ansatz. Let

[T

Abstract. It is shown that, in contrast to continuous axial g ) :
= . <K d {1
symmetry, discrete axial symmetry admits scparated SU(2) monopoles : 1g"ék*‘ He hhu
. L .
in static equilibrium. The Corrigan-Goddard conditions on the
parameters are enormously simplified and for 3 equidistant be the Ward transition matrix(4) and let
n -

1 i i y j i i h_l - y . - '

monopoies are identically satisfied. Hh = Y + Gy ¥ - W =‘_1T (5" bJJ » = 25 KR - X.5 y (2}

2 - E 3 . ) 5 N -1
where the coefficients @, (3.3 ) are polynomials of degree (n-r) in § and $
ik - :

and are hermitian in the sense that Q{5,399 = a{(-5 , -35) Then the Co-

Ansatz consists of choosing

Note that a previous interpretation in which the continuous axial symmetry

becomes twisted as the monopoles separate is incorrect.(g)



x -t ‘KS(‘
" \.t: where K

is linear in ¥ in the axi symmetric
=(o0, 2,14, )

and the integers n_ are such that K

T n~1
wwswﬂ:v. That is, np= £(1,3,5, -, 3|_v for even n and n,

for odd n: The coefficients Uﬁaw‘w‘_v in (3) are not polynomials, but,

~1
as will be seen later, they inherit the symmetry properties of the «, (3.3 J.

The polynomial :: contains the n(n+2) parameters mentioned earlier, and the

n(n-2) conditions for them may be ox?.,ummoa:v
=1 -2
AR =c d3
EXTIN z A T v or DE%. ﬁw 7 TS<mgS

where ¢ is a constant (identified as the Higgs constant). It will be con-
venient to treat c as a free parameter and regard the right hand equations
in (4) as the CG-conditions. Note that the conditions simply state that the
first (2s+1) Laurent moments of the bg are zero.

The linear transformations of the {-variable mentioned above are
obtained by requiring that when the coordinates x,y,z and the variable 3
are simultaneously transformed, the quantity ¥ in (2) remains invariant
It is then easy to see that (x,y,z)
ﬁm%wmzwo:wm.zmﬁln.oa\mdwo:mnaﬁ%omvosadow l.ww.w ml;wi m:a wlw w m-

(or reverses its sign for z+ -z).
respectively. From (1) and (2) one then sees that the system will be
invariant with respect to these transformations if :s is invariant (or
reverses its sign) and that such will be the case if the coefficients
olg, wsv are invariant (or reverse their signs) under the transformations
of w alone. Thus the invariance may be expressed completely in terms of
the behaviour of the Q, w\ mLp with respect to the transformations of 3
Before considering discrete axial symmetries let us first consider

the reflexions. From (2) and (3) it can be seen that any reflexion symmetry
of the mﬂ is Hzroﬂwdoa by the ooﬂ)omnoﬁavsq b,. and hence we can introduce a

quantity ‘C,{%, w \ to denote either a. or b,.. In terms of C. one can then

construct the following table:

(3)

(4)

»o‘
Table 1.
Reflexion x Yy z H«Wmmw.wﬁ% x,y and 5
Condition CAD= O3y | CUR)=CE) | E()=H0C, (8 | CarniS) =0 =C (54T
No. of parameters DMT\:.NL mm3+@z.v W.?.I.m& mizm +3) M(m+3)
No. of conditions fin-atnn W?\Npmjiv WS;NX«TTC (m-plam+q) Lim-dm 1)

Here and throughout m is defined so that n=2m or n=2m+1. Note that for x,y

and (x and y) reflexions the rmﬁa;wowd% H,oacﬁ.om that the n be real
g ) and 35

functions of }~2% , :L+vv respectively.
We should point out that z-reflexion leaves the transition matrix

invariant only up to a gauge transformation.

_ Let us next consider R, ~invariance. Since .r.:m.m corresponds to

>3 eV for §= 2/ ym=t N and the only powers $° for € <nwhich are

. . . . n
invariant with respect to such rotations are We and 3 one sees that

R -invariance reduces the polynomial Hy (2) to the form

-1

n-i =
Ho= ¥"aa ¥ 4t af + Ao+ 65"+ &S (s

~—r

where all the coefficients are independent of J and onlyé is complex. The

n(n+2) parameters in (2) are thus reduced to (n+2). One of the O, may be

eliminated by a suitable choice of origin on the z-axis (§>Y¥+3 ) and & may

. o o o 9y ‘
be made real by a suitable choice of azimuthal angle {Y% -=3¢ ) thus reducing

the (n+2) parameters to n. Note that when € is real, the system is x-reflexion
invariant for even n, and y-reflexion invariant for all

One must then consider the CG-conditions for the system (35). The
point now is that since H, u: Auv is Ry-invariant, so are the roots Welz, )
and the coefficients &w {y,5 ) in va. But that means that the By( %, w,ru
are functions of & and 3™ only. In that case the CG conditions (4) are

automatically.satisfied for m#0 leaving only the (n-2) conditions
{ 3 ¢, = 0o S = 1, e, n-2 .
ao¢ ,% 3 £s 1 ‘ (6}

Thus Ry~invariance reduces the n(n-2) conditions for n(n+2) parameters to
(n-2) conditions for n parameters. (One of the 2 free parameters- is the
Higgs constant). As a matter of fact the (n-2) conditions (6) may be
regarded as normalization conditions for the (n-2) constants a, in (5) and
it is easy to see that, to first order in € of equation (7) below, they

are satisfied by choosing the a_. to have their axisymmetric values. Thus

T
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a

s -n
- . o n = . v
to first order in € the Ansatz Hn = Ha s G(g +3 ) where %in 1s the

axisymmetric Ansatz, actually satisfies all the CG-conditions and hence
furnishes an explicit solution for all n.

The Ry-invariant Ansatz (5) is not automatically z-reflexion
invariant and if we impose z-reflexion invariance it reduces further to

+ & ( éh'f (‘S)-n > 3 (7)

n n-3 n-2w

BHo=T + Qe & 4 o+ Oneam §
where n=2m or 2m+1 and the azimuthal angle has been chosen to make € real.
There are only m+l parameters in (7). On the other hand, from the table 1
we see that for z-reflexion invariance the @ZY(E ) are odd in 3 and hence

the odd-order conditions in (6) drop out, leaving only the (m-1) conditions

LbL g (s)=0  serema (8)
oAl <

for the (m+1) parameters. (Actually, for even n the g:rﬂ(S) are identically
zero). Thus the combination of R, and z-reflexion invariance reduces the
n{n-2) conditions for n(n+2) parameters to (m-1) conditions for (m+1) para-
meters, where n=2m or 2m+1. In particular, for n=2 and n=3 there are no
conditions.
The Ansatz (7) is hermitian, has total monopole charge n, and is

regular in the neighbourhood of its axisymmetric 'limit if the limit is
regular (which is true for low values of n and very likely for all n)(5)(6)-
One might ask however, what kind of ccnfiguration the Ansatz actually describes.
The Ry-symmetry implies that any monopole (zero of the Higgs field ®(x) )
off the z-axis must be accompanied by n-1 other monopoles all lying on a ring.
Hence the Ansatz must describe either a ring of mcnopoles with equal spacing
or a set of monopoles on the z-axis. Actually the monopoles on the z-axis
would have to be at the origin since separated monopoles would be inconsistent
with the fact that in the ax%gi{gwctric limit the zero at the origin is non-

)

enerate in the z-direction (Note that for odd n the z-reflexion

g

invariance would force at least one monopole to lie at the origin). But now

a direct computation of @LO) for small € shows that it is not zero for any n
and hence the system describes a non-zero ring of monopoles. (The computation

is faciliated by noting that because of the R -symmetry we have é{o):\A:'@A“ﬂ\
where A, are the usual moments )(7), and that only the coefficients 2 and
{5of Ky., enter the computation. Furthermore 6:0 for even n and €= -6(3“_ ih)kh

for odd n.  In fact for odd n | @to)i = € ).

<5<

As illustration let us consider n=2,3,4. For n=2 the Ansatz (7)
reproduces, the separated 2-monopole solution of Ward. TFor n=3, by suitably
normalizing the coordinates we have
K1=@4%ﬂﬁ‘w9®kw$*&WXW5wﬂ

(u,;-w.y)(wf«\}“)( [b)s»w,_}

3 -3
Hy= r Yo els™= ) ana B

where W;«WsW,=0 'Equations (4) then rsduce to

- (o) LT duate s L (o)
B N e N . )

The first equation simply determines ¢ for the given coordinate normalization
and the second is the CG-condition coming from (8). However because the

integrand is odd ™t iné the CG-condition is automatically satisfied. Thus the
Ansatz (9) constitutes an explicit solution. It obviously describes
3 equidistant monopoles. ’

For n=4 by suitably normalizing the coordinates, we have

Ho = ¥y as e(xer) | Ko )i (oosul

S 5
W {w= o) (1)
where a, € are parameters and *(wy W) are the roots of Hq'-"c forf. Since KS
contains no even terms in ¥ , the odd coefficients er in {3) are zero, and
so the equations (4) reduce to
- R
Lofdy gmawt e Lopdt Been g (12)
)T wefwReY 2m ) & wolwso?) ’
As in the n=3 case the first equation simply normalizes c relative
to the coordinates. Thus there is one CC condition. It is not automatically
satisfied and relates the parametersa and€ . The system described is a set
of 4 monopoles located at the corners of a square.
Finally let us consider Ry _j-symmetry (for n»3). Since the only
powers ¢ for {<n which are R,_j-invariant are $° and 3" we'sec that
R _;-symmetry reduces the polynomial Hhin (2) to
n n-\ - Bl s, L
Ho= ¥ e al woveag, ¥ +Lea YT ESTS 4 0w g RS S (13)

4
where all the parameters are independent of$and only the ps are complex.

+ . - ; 2
To see this more explicitly note that Use»—w3 and w‘é?-JOLas > -3

For example for small &, W, =- &{ [ ‘{3) s Wy x 23 Wy
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By suitably choosing the origin on the z-axis and the azimuthal orientation,
one of (&,;¢{) can be set equal to zero, and one of the P¢ made real. Thus
(14) contains essentially (n+2) parameters. On the other hand, because the
roots W, , -and hence the coefficients‘@s in (3), are Rn_l—invarianr, the

n

-1 i
" and & .. Hence

Laurant expansions of ‘the €5 are expansions in &
the CG-conditions (4) are automatically satisfied for mjo, and reduce again
to the zero-moment conditions (7). We then have (n-2) conditions for the
(n+2) parameters in (13).

The R,_; symmetry implies that (13) describes a ring of n-1 monopoles,
together with a single monopole on the z-axis, or else a set of n monopoles
which are all located on the z-axis. The analogy with the R, -case, suggests
that it describes the ring for non-trivial values of the parameters, but we
have verified this only for the colinear n=3 case. Assuming that (13) does
describe a ring, the 4 free parameters could be identified as the Higgs
constant, the radius of the ring, the distance between the single monopole
and the ring certre, and one internal variable. For example, for n=3 we have,

for a suitable choice of origin and orientation,
H, =Y (K B e ) I w, + ?u§1+ﬁ35~1 » (14)

where only {3, is complex. There is only one CG-condition, namely the one
shown in (12), and this condition is not automatiéally satisfied.

In contrast to (8) the Ansatz (13) is not automatically y-reflexion
invariant, since that would require that both BS in (13) ve real. The
Ansatz is also not z-reflexion invariant and z-reflexion invariance reduces
it to

. L Em \’IM-L . 2n -1 ‘_]-LM
me‘-‘ H + Q. aet Ogea ¥ "‘F(S ~S VR R (15)

I ;i - * : X -2
HZMH’ J{E iﬁ;\{)zm 1—;»~~*QLM_LYf C““*P(T_\m*sl )]} 2

for even and odd n respectively. In (15) the azimuthal orientation has been
chosen so that the single Pwhich occurs is real, and the system is automatically
y-reflexion invariant. There are m+1 parameters in each case in (15), and

since the z-reflexion invariance means that the odd-order conditions in (9)

are automatically satisfied, there are (m-1) conditions for these (m+l)
parameters. Since the single monopole and the ring-centre must now coincide,

the 2 free parameters are presumably the Higgs constant and the radius of the

ring. - Note that for odd n the expression in (16) is just ¥ multiplied by

the expression for even n in (7). For n=3, (15) reduces to

My = Y87 x=p(e-357) ] (16)
the CG-condition (12) is automatically satisfied and the explicit solution
is the same as the colinear n=3 solution found in a different manner by
Brown, Prasad and Rossi(S)-
In conclusion it might be remarked that one could continue along
the same lines and consider Rg-symmetry for all sgn. However, for $gn-a
the CG-conditions for the special moments w = &, A8 ,39 -~En-2are not

automatically satisfied so the system is a little more complicated.
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