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The main”purpose of these lectures is to treat instantons
and monopoles, as far as possible, as. the same type of solutions
of the Yang-Mills-Higgs field equations. For this reason, the
only type of monopole solutions we consider are those for
systems of fields where the self interaction potential of the
Higgs fields vanishes, thus allowing the existence of self dual
monopole solutions, in concert with the self dual instanton
solutions, there being no known non self dual instantons.

Within our context, instantons and monopoles are special
types of solutions to the classical equations of motion for gauge

fields defined on four and three dimensional Euclidean base

" manifolds respectively. The special features of these solutions

are that they have finite action, and that the value of this

action isequal to a topological invariant via the condition of
self duality.

The manner in which the qualitative unification of intantons
and monopoles is tackled here is by way of developing a framework
for the description of such solutions on N dimensional base
manifelds. As Euclidean field eguations these would be analogous
to the static sclutions of the Maxwell equations, namely the
Laplace equation on N dimensional manifolds. Here we shall find
tagt it is possible to extend the definition of instantons to
any evsn dinensional ranifold, and monopoles: to any odd N.

We sl.ell first give a brief introduction to classical gauge
field theories by way of introducing our notation. Then the case
of instantons and of monopoles will be treated separately. The
last part will be devoted to the consideration of some explicit
solutions as exampies of the foregoing framework.

We stress again. that we are only concerned with self dual
solutions here, thereby not covering the well known non self
dual monogpnie solutions of 't Hooft({1l) ana Polyakov(z).

GAUGE FIELDS

There are two types of fields in such theories. The gauge
covariant fields, like the Higgs field, Dirac fiels etc., and
the curvature o the second rank antisymmetric tensor fields,
and the non gauge covariant fields called connections or vectcr

potentials.
The elements of the gauge group are functions of the base
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manifold via the space dependence of the group parameter. The
groups under consideration will be SU(n). Thé reason we do not
take G the gauge group to be SU(2) for simplicity is, that on

N dimensional manifolds with N>4 it will turn out that our new
definitions of self duality will only allow non trivial
solutions for G=SU(n) for n> 2+k with k> 1. In wnat follows the
index of the base manifold will be labelled by a 3-eek indes
for even N, and a Letin index for cdd N.

Also, because of our insistence on seli dual soluticre »HF
the field ejuaticns, we shall consider only gauge covariant
Higgs tields ¢ that take-their values in the alge)nang cf C.
The Yang-Mills fields and F v and potentials Au‘can take
their values only 1n‘§

Under the acthn of an element g of G

g(x) = exp <T,8(x)>

where T are the (antihermitian) genefators in and 6 (x) the

local parameters, gauge covariant fields transform as

) ‘—5—* gt g-l _ (la)
F -1
w g 9F9 (1b)

while the Yang-Mills potential or connection is defined by the
following transformation. rule

A " A gl+ 1.
W g T 9A 99l g (1c)

The transformation rule (lc) confirms our statement that A
must take its wvalues in é% since the inhomogeneous term g3 g‘1
does take its values in E} only.

It is clear from (la) that aum is not gauge covariant, but
that the covariant derivative

DpQ = au¢ + [Au,¢]. (2)

[N

is covariant, by virtue of (la,b,c), with
® D ¢)gl. 1d
(Du )—-§~* gl " ) g (1d)

The Yang-Mills field, or the curvature tensor referred to above
is in fact defined by the fcllowing relation

[b,p] £=F f (3a)
TRV By .

F
uv

1]

BuAv— avAu + [Au'Av] (3b)

where f is a function taking its values in some representation

~of the group G.

An important consequence of the non commuting nature of

the covariant derivative is the series of differential identities

satisfied by the the curvature field, called the Bianchi
identities.

In three and four dimensions, the Jacobi identity for the
cyclic product of Du acting on some fuction f implies the
following identities

€535k [Di'[Dj’Dk]] =0 (4a)
€yypo Dy [P D 1] = 0 (4b)

which lead, because of (3a), to the Bianchi identities
' Dy*F, = D *F  .=0. (5a,b)

In (5) we have used the definition of the dual of the curvature

* =
Fi £ eiijjk (6a)

* =
Flu b €vpoFeo * (6b)
It is clear that in higher dimensional manifolds the
curvature will satisfy further Bianchi identities in addition
to(5), arising from the extended analogues of (4), fo example



*(qg) KaTauspT TyoueTd 213 JO onjxin Aq
(sT) Mgy = Na
(o) ~

Tenp JT9s oq 03 paxTnbax ogq 03 axdM UOySSND
Ur sSuotTInTos oyl JT wmﬂwmﬂumm ATTROTIUSPT o0 PTNOM UDTUM

(pT) 0= 4 da
uoTjow yo suoTzrvnbe msu 03 speat

n n
(1) RS eI

K3tsuep.

UOT3OB [RUOTIUSAUCD BYJ *UOTIRLIOU INO UT J =iy TBNP 2UO0

(0)

ATuo sT dI8y3 @s5€d STYI UI * SUO3UR3SUT PaTIed OS dayl aIe

(g)
p=N I03J suorzenbs STTIW-Buex ayj JO suoTanIos Tenp JI[oS

N USA®:gNOLNVILSNI

*SUOT309S OM] 3XdU
dU3 UT. 3SSIDJUT JO WSJT UTeW Sy3l Sq TTTM STUL °SPTSTF 3ssUx JO
K3Tsusp uot3de ayy Afaustearnbe xo suorzenbs sbueabeg-rsing syy

POIDPTSUOD JOU SABRY 9M IBJ OS °*SPIOJTURW TRUOTSUSWIP N UO SPIaTF
ahfneh I0J UOT3BIOU INO JO UOTIONPOIJUT Yz so3o7dwod sTyL

. . ©_-Yipdad X ,, _ odan o, _ ot a
TN.: ou mTvool .fovaoufio

odar D a

(zm) 0 = 1 °

‘4 1.
) a 0= mﬂ+v a
swroy oAT3oadsaX 9yl O3 2SUSPUOD § PUB 9=N IOJ SOTITIUSPT
TyoueTd Byl (6) Pue (8) ‘(L) FO uoTielOU BYF bursn ‘Arreurd

(0T) AthWﬁﬁvV&ﬁlvua+v ~AvV&"HAthA+VuAIV

sat3yxadoxd

butmoTToI °oyy ssossod suorizerado K3TIenp pepusalxs asayl ,
*uUoT309S uxmc.mnu uTt Kaxedoxd STY3 JO JO S0UDTITUBTS

Ay} uo NIPWSI TTeys oM °T JO sIojoey Aue SATOAUT 30U OP UYITUM
mCOﬂamquo.muﬂHmﬂw JO Iaqunu ppo oaery om d UdAd® Y3TM SPTOITUBW

(,as) . 0= { I

107 ®TTym ‘Xroataosdsex T IO $I0302J UYRTM POUTIOpP =Je Iy
zey. pe sroneresdo ADTTRND JO JISqUnU USA® 9ARYy em d ppo UITA

(_A) : ‘ . cyhcympba>:mwm u.xpoap:mﬁlv

homv ¢ | cu«pmcyxpua>:uﬂm _ ca>:&ﬁov

A+mv . :u«%bamcyxpoa>numm _ >:mﬁ+v oe
Alwv | «Pm «PbQ?:mmMIn oa?nhA|V

,A+mv v Kpbah KPDQ>:uﬂW _ >:mA+v 9=

g pue 9=N SUOTSUSWIP I9UBTY OM3} 3X3U
aua 03 (q9) uoTtzexsdo X3TTenp =N ©U3 puslxXe om osayjl bursn
, *Toquis oTtxjesuuisTiue ATTe303 @yl se

seTIjouwis Bwes 2yl SARY SWIOI-3Z ©S8y3l Fey3 Hurjou ‘yiloy Os pue

a1p0d n apd ad
(:2) (% gy - (% Ny -
d - d d 1podad
(RO gy L (00 gy L (00 gy Y a=(9)a
d n dar od an odar
(L) Y2y - (20 May - P e a

mauow 3Z SINIRAIND DHUTMOTTOF

92Ul SUTIOP oM pus STU} OF .mcoawcmEﬂv %umuuﬁnum.ou {q9)
uotzexado AJTTenp 2y3 pusixa 03 86®3S STUR 3 [NF9sn ST 3I

"y3xoJ OSs pue

519 L _Tneesn--Ngly
d} a 3

TnZd ~mn::

(1.499) . 0= {{ d d}

1nzn ~m::nmwm;oﬂn~:m:¢amn..Tz:z:m

03 ©sTx burath ‘yazoy os pue

€ i T sne Ny

S 9 L
(aan) 0 = (el e M e May e ey

n_,h 1 Tazaennash -+ NgNy

b2l < € i S
a "o e ary 3

(ap) o=0{[

=g



L

That such solutions should have finite action, proportional
to a topological invariant with .integer values (the Pontryagin
number) can best be seen following the demonstration of BPST(3).

Consider the inequality

’

, _ (o) 2 N
er J(F, F)2 dx 30, (16)

which yields

fxgudqx > te] Fuv(o)Fuvdqx , (16"

the right side of which is equal to 472 times a normalisation
- factor times an integer, provided that the curvature vanishes

at infinity in the following manner

Au =" 9 Bugl (17)
where g(x) is some element of G.

It is then clear that the self duality condition (15)
causes the inequality to become an equality, and then (16')
expresses the fact that the total action correcponding to such
a solution is equal to the finite quantity on the ~igt.

The question ncw is whether the above arguacrt can ke
modified to apply to Yang-Mills fields defianed on N=2p
dimensional manifolds (p»>2). As in the previ~is Sectiorn, wes
shall demonstrate our poin% Ly explicit COLsidstag¢5n of tre
cases p=2 and 4.

From tae above argument of BPST for H=4, it is clear that
the cazntral agency which controls the behaviour of such solutions
is the integer topological invariant, with (17) satisfied. So

we start by writing down the topological invariants respectively

=6,p=3: Chern Class(4)
q == ¢ tr(F F F . d ' 1
6 DVg “uvpota rj HV pOo TA 6% : (18)

N=8,p=4: Pontryagin Claés(4)

- 1
9,757 Suvooraknd (EFF F  FF = SEXF) (Fpo. trFraFyn)dgx (19)

where D is a.normalisation factor depending on the representation
matrices of G and Vy is the volume of the N dimensional sphere.
It is now clear that if we are to be able to use an argument
similar to the BPST one, where the action integral becomes
equal to the’ topological invariant, then we must expect the
action densities to be of progressively higher order in the
curvature as N increases. , '
Thus for N=6 let us consider £he following inequality

er [ F2) - Mr2) )2dex 3 0. (20)
It is also possible to use the inequality
tr J(F@) - TVr(4) )2aex 2 0

but this simply reduces to (20).

Expanding the integrand of (20), it is readily seen that
the csoss term trF(Z)(+)F(2) leads to the integral formula for
the topological invariant given by (18). It is therefore
obvious that if we were to consider the (unconventional) gauge

theory with action density

A= tr r2)2 + Prayz (21)

and rewrite (20) as

[fedex » 2DVeqs (201)

then, if we ‘imposed the following extended self duality

conditions

F2)=Mr@2) or F)="r) (22)

then (20') would become an equality, and the total action
corresponding to these solutions will be finite.
Similarly for N=8, we consider the following inequality

tr [1F(2) - F@)12dex + L Jreer) +©F @) %a5x 20 (23)
or the equivalent inequality obtained by replacing F(2) and

(+)F(2) by F(6) and (_)F(G) respectively.
Then expanding the integrands in (23) we find



o

axmm&mx 3 2DVggg . . (24)

where the action density for the eight dimensional gauge
theory is taken to be

Ba= trryz+Mr@)2] + 21eer(4)12 . (25)

The total action is then =2q¢ual to the (firite) guantitv 2DVicayg
when (2%) becomes an equality subject to the extended self

duality conditions

7(2)=Fr(2)

and . (o)
Ff4)=-'"°'p(4). : (26

Two Hmswnwm are now in order. The first is that theself
duality condition (22) shows clearly why we had anticipated a
factor of i in the definition of the duality (8), for otherwise
122) would lead to a trivial solution F(2)=0. This situation
will always occur for odd p (N=2p), in contrast with the cases
of even p , whare for exaple the duality (9) do not involve
factors of i.

The second remark is that for N»>4, the gauge group G=SU(n)
will allow non trivial solutions of (22) and (26) (26') only
if n>2. It is easy to check for example that F(2)=0 for n=2

and N=6, by taking the trace of the self duality ejuation.

Finally it is clear that the extended self duality conditions

solve the Buler-Laygrange equations arising £rom the corresponding

action densities. For mxmame~ for N=6 the field equations are

1
D F + 5 Utﬁﬁ a

VIRV ~mD b =0 (27)

uvp o

which is identically satisfied if (22) hold by virtue of the
Bianchi identities (]2).

MONOPOLES:0dd N

Our considerations here are restricted to self duel monopoles

In thresdimensions these are the solutions fodd by Prasad and

moaémemea”mv and by moaosowdeAmv

. The Lagrangian density of
these gauge theories include no self interaction term of the

Higgs fields, the solutions however possess suitalble boundary

or F(6)="VF(s) 126}

4

conditions which otherwise would have been consistent with and
implied hy the peculiar form of the Higygs vommSHMwHva.

We review the N=3 case briefly before going on to the
N=5 casc as an example of theextension of the notion of self
duality for monopoles.

The Lagrange density for N=3

mwwu W tr mwm + w wnﬁu»evn (28)
leeds to tne field equations
D.F.. + [¢,D.%] =0 ' (29)
J 13 i
D.D,¢-=0 . (30)
i7i

It is mmm% to verify that the 'self duality' condition

MHu . mHuWUFe

(31)
solves (29) immediately, and reduces {(30) to the Bianchi
identity (5a). Therefore the problem of solving (23) and (30)
is reduced to finding solutions of (31).

Now solutions of (31) that satisfy the following boundary

conditions
. . i
D, ooz 0 tré 7o const. (32)
and
GMHHHN OODmﬁ.% (33)

have finite action (energy), equal to 4rntimes an integer.This

is seen by considering the following inequality

- 2 \
tr HAMHQ D, ¢ )?d3x » 0. (34}

[
ijk
Expanding the integrand, and using Stokes' theorem and the

Bianchi identity (5a), this reduces to

[Z3dsx » ei 5k tx) oFyds; G.ﬁv

and this inequality becomes ‘an equality if (31) is imposed.
It now remains to show that

1 e
ds; = t«m..w;wwg 99,03, 0 dS; (35)

Treigx trf oFyp 37ciy i



where the right side is & Kronecker integrel subject to (32),
and so takes on integer values only.
To arrive at (35) we introduce the so called 'electro-

magaetic' field
F.. = tr o(F,, + F(D,9,D,0]) (36)
ij ij 4271777

which on the r-——= surface over which (34') is integrated, is
equal to the integrand of the right side of (3¢), because of
(32). But by using (33), we can show that (38) reduces to,

F.. = 03,B.-3.B, + tr o,03.0 (36")
with ij. fi73 %301 mp.uu

By

tr oA, .
1

This proves (35), since the surface integral of the pure curl
term wwmuxwumw vanishes. .

Therefore the energy integral is finite and equal to an
integer modulo 47 , provided that (31),(32) and (33) hold.

We observe from the above that the integer bounding the
action integral is a Kronecker integral. As there exist no
global topological invariants on  odd dimensional manifolds, we
expect that the bounding integer should also be a Kronecker
integral for higher dimensional Yang-Mills-Higgs theories.

We proceed to define the extended self duality conditions,
that generalise (31), by considering the N=5 case as an example.

The Kronecker integral for N=5 is given by

1

T7i5kim tF J ev 00,00, 00,0 ds (37)

J

in terms of the Higgs field satisfying (32).

As for the N=3 case, we define an 'electromagnetic' field

)%d.ﬁ = tr o{(Fy, ¥ W_fﬁou.zfai + 3De,D ¢1)} (38) |
which at large distances behaves, because o (32}, like M
¥kl 7= £ 954 - SELD |
On thz otlicr hand, using (33) it can b2 sean tnat
awﬂ. =1 tr ¢9,03.05, ¢5,9 + total divergence. (oot
1jkl 2 17737k 1 -

77

We are now in a position to find a Lagrangian density in
five dimensions, whose action integral is controlled by the
integer (modulo 472) given by (37). To this end we consider

the following inequality

tx ?W_m.d.ﬁamu.ﬁa. - D;0) %dsx > 0. (39)
nroomwdm,ﬁsm Lagrangian density .
Lo= tr ( : Fig? * (0;07) {40)
and. expanding (39) we get
[£sdsx 2 5 e500m €8 ] 9Fi,88; (39")
jklm Jklm-7i .

where in the last step we have used the Stokes' theorem and

the Bianchi identity

€i jk1imPifikim = 0
The right side of (39') is now obviously equal to 4m?

times (37), by virtue of (38),(38') and (38''), and the action

integral of this five dimensional Yang-Mills-Higgs theory will

be finite and proportional to an integer provided that the

following self duality holds
1. F =D, (41)
417ijklm” jklm it

which turns (39') into an equality. This is a direct generali-

sation of (31l), for N=5.

Here we remark that a gauge theory with G=SU(n),N>3 has
non trivial self dual solutions only if n>2. For example with
N=5 and n=2 Uwe vanishes everywhere, as can be checked
easily by taking the trace of (41).

That:such solutions fox N=3 were called monopole is
because the integral in (35) can be written as

\ meuwnmuﬁamw = \m.mw.

wiich g the megnetic flux of a monopole.



EXAMPLES

Wehave so far not considered any explicit solutions of the
above mentioned types. Such solutions have been found, starting
with a suitble Ansatz for the form of the solutions and substi-
tuting these into the equations of motion, or eyuivalently the
self duality equations. Ta this way the numbar ¢ £ unknown
functions is suitably reduced and the ensuing dilierentiai
equations are solvea. In fact all known oxact solukions @re 27
the self duval type. This is no: surpricing, rfor the sely duality
equations being of lower order than the eqguations of rctisa
are much easier to solve. In addition for NW=4 the self duality
equations are alsc linearisable, while this is not the éase fer
N=3 and probably not for higher N.

We shall not review any of the explici* instanton solutions
here for these are very well known. They are the solutions of
BPST(3), Witten(7)and Jackiw Nohl and Rebbi(s), all for G=SU(2).
Exact instanton solutions for G=SU(3) are found by Bais and
Weldon(g)and multi-instanton solutions for G=80(5) by Tchrakian
ana Rawnsley(lo).

-Known exact monopole solutions on the other hand are much
fewer, and only of the spherically symmetric variety. These are
the solutions found by Prasad and Sommerfield(s)for G=SU(2) and
by Bais and Weldon(ll)for G=5U(N+1). Both these solutions are
self dual in the sense described in the previous Section.

It is the Prasad-Sommerfield (P-S) solulion that we wish
to discuss in some detail here, because in reference(5) it has
been arrived at from the second order eguations of motion by a
trial and error method, while here we shall derive it from the
first order equations of duality systematically. We hope that
our procedure may be of some help also in finding non spheri-
cally symmetric solutions.

Wwa start by making thie following not very specific Ansatz
for the solutions of:(29) and (30), or (31)

A, = (42a)

i T i3k Y5 m
- R |
® = T, By PoTyTTS0g . (42b)

The spherically symmetric Ansatz of P-S is given in

particular by

> =(K(§)'1l§ 3 =‘§é§)§ (42'a,b)

whence the Euler-Lagrange equations (29),(30) yield

]

12K K(K2-1) + KHZ (29")

r2u"! 2HK? . : (30")

Tne solution to this syétem of second order cbupled non
Jinaar differential equations was found , by a trial and error
method, in reference(5) to be

- _ KX __ | H=kr coth kr - 1 (43a,b)
sinh kr ' . e

In contrast the(anti)-self duality equations give the

following first order coupled non linear differential equations

rK' = -HK , rH' = H-K2+1 . (3la,b)

which are obviously satisfied by (43a,b). Although much simpler
than (29'),(30'), these equations too do not lend themselves to
a particularly obvious method of integration.

To proceed more systematically we substitute (42a,b)

directly into the (anti)-self duality equation and have

T > o _ = ‘
Gij .0 Bjai + aiaj + BiBj + a.8 6ij Biuj 0 . (31")

This system of equations contains six unknown functions (a,8)
instead of (X,g)and is therefore not more specific than (31).

A more specific Ansatz would be

a= Vilnpe , &= Vin o, (42''a,b)
leading to

-1 x 1 - = e
Gij(p Ap + Vlnp.vinQ) + ailenn ailnp ajlnp 0, (31'%")
involving now only two unknown functions.
At this stage it looks as if (31'') might lead to multi-

monopole solutions, if we were to make the further Ansatz that
2(x,y,2) = 1, whence (31) would reduce to

Flap = 0



that is )\2
1+ I 5
n |x |

leading to the monopole charge (which through self dualicy is

. (44)

l\<

proportional to the energy) according to (35)

= [d3x Aelnp . 45"

=
J:.i ot

Unfortunately ths integrand in (45) is singular ai thz
origin and »lows up, so (44) is not a 'monnpole! solvlion. "his

(8)

is in contrast with the multi-instanton vhele the singulanities
of the field,dus to the singularities of the solutions of the
four dimersional Laplace eguation, can be gjauged away.

dere the corresponding singularities in A, arising from
those in (44) cannot be gauged away. For example taking the first
term in the sum in (44), ithave

"'__l !Z] -1 1 -1 :
A—il-gm*f—g%-ggvg (46)
with .
Z=3%%1, g=-2%T € su2

and under a gauge transformation with the element g of G
z
= __k 3 1 '
Ay < eiyk Tz T3 9939 (461
where the singular (second) term has not been removed, unlike
the multi-instanton case.
We now go back to the Ansatz (42'') and as a simplification
require that both p and @ depend only on the radial variable r.
Introducing then the function

£(r) = &= 1no
we find from (31'') that -
p = rlg (47)
and that g(r) is given by
1
g% + 3 £2 = const. . (48)

which can be integrated immediately. Choosing the constant on
the right side of (48) to be positive or negative, say t%kz,

with

~a
R
A

we have respectively the following two solutions

£ = k tanh %kr (49)
1 '
£ = -k tan ikr. (49 ")

The solution (49) is precisely the P-S solution, which
hhas here been derived systematically.

Solution (49') on the other hand does not satisfy the
c¢riteria for it to be a 'monopole'. In this case, even though
A.12d ¢ zre themselves regular at the origin, the Layrange
d&égsggfconstructed from them is noé@m?hls éﬁﬁ?&ﬁa; behaviour
is reflected in the fact that (49') does not respect the finite

~ energy condition (32), and the magnitude of the Higgs field

oscillates at large distances. The corresponding mmagnetic
charge and energy are infinite.

There is another non'monopole' solution of (48),

_ 2
= Tfa (50)

Both the Yang-Mills potential and the Higgs field are singular
at the origin, the finite energy condition (32) is not satis-
fied, and the energy integral diverges but just logarithmically.

The only instructive aspect of this solution is that the
resulting connection field satisfies the 'instanton' boundary
condition (17)

X gl

pointing out to the fact that on a three dimensional manifold
there are no ‘'instanton' type solutions of the Yang-Mills-Higgs
equations.
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