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Flat Partial Connections and Holomorphic Structures in £ Vector Bundles

' J. H. Rawnsley

School of Theoretical Physics
Dublin Institute for Advanced Studies

Dublin 4, Ireland

Abstract

The‘ notion of a flat partisl connection D in a c” vector bundle E,
defined on an integrable sub-bundle F of the complexified tangent bundle
o7 a manifold X is defined. It is shown that £ can be trivialized by

tisfying Ds = 0. The sheaf of germs cf sections s of

a natural fine resolution, glving the de Rham and

Dolbesult resoclutions as special cases.
IT X is a complex menifold and F the tangents of type (0, 1), the
w
flat partial connections in a C vector bundle E are put in correspondence

with the helomorphic structures in E.

i

¥ X, E are homogeneous and F invariant, then invariant flat
cornnections in E can be characterized as extensions of the representation
of the iscotropic subgroup to which E is assoclated, extending results of

Tirao and Wolf in the holomorphic case.

1. Introduction

Let E be a holomorphic vector bundle over a complex manifold ¥ and
TXC = Fa 5 the splitting of the tangent bundle of X inta subbundles
of types (o, 1) and (1,0) respectively. Then F is clesed under Lie
bracket, -and there is a unique first order differential operator

D: TFE — TF9E i

such that

i

£Ds 4+ BF®S

i

D($s)

for £ in C™(X) ., s in [E and where Ds=0 on an open set U if ang

only if § is holomorphic on- U . If wse put

Vis = (%) , ferF, (

93]
)

identifying g with Hoem (F,€) , then Vg behaves like & covariant

derivative in E , but is only defined for ¥ in [F . Moreover V. is flat:

v[§,"73 - VEV’)'_V”]VS , SmelF. (4

If we begin with & C® vector bundle E over X and a differential
operater D as in (1), satisfying (2}, we can ask if E always has a holomorphic
structure such that the solutions of Ds=0 are precisely the {local)
holomorphic sestions of E . The answer is yes, provided the operators
defined by (3) satisfy (4). This is the Corollary to the Thecrem (see below).
It is useful to encode the holomorphic structure as such an operator O or V .
since operations on the category of Cm vector bundies often extend sutomaticelly

o
to the category of C™ vector bundles with connections (or partial connecticnsi.



-

For example, if K and Q are line bundles with 4 : QT —s K an
K
isomorphism and ¥ a partial connection in K, there is a unique. partial

connection 40 in @ such that

dwnim.@ml = Amﬂm@m_@mp + s @ Qwempv

ﬁoHamE M %owzjunj 4W. Hmamﬁ:mam:am:mmnﬁb:mm:w»D+. Q . Ajm:
4\9 is flat if and only if <x is. 1f K 1is holomorphic and Y™ the partial
connection on the {(©,4)  tangent bundle defined above, Q“A is flat and hence
R has a flat uwdﬂwmw connection on the (©,1) tangents. Then Q has a
holomarphic structure and the isomorphism 1 - @.ﬁ — K becomes an isomorphism
of holomorphic line bundles. cf. [5].°
Partial connections were introduced by Bott [2] for foliations. We can

combine the real l_ucb..mﬂo:»mau complex structure versions as follows: If X is
any manifold, JIVAQ the complexified tangent bundle, a subbundle mHn\.ﬂlvAﬁ is
integrable if

i) Fa «muIH has constant rank,

(i) F  and ﬂll+_ﬂvHu are closed under Lie bracket.
Then according to Nirenberg [7]1, X can be covered by open sets W on which

there are coordinates W,, ..., U, ,V, ,..., V s X ., where, if
K} IR 1V 11 Fam s Y,

..\&3}

Zzj = X+ ;\H_luu.vu‘n:...\i\r , F is spanned on U by
\u\wc.v..‘y\w\mgkﬁw\w\wm.“...\w\WMvS.

£

If § is o C° function on X, let d47f denate the restriction of f ta T,

regarded as a section of the dual bundle == . Putting bmﬂ = A ﬂ.x B mﬂ
extends to a differential

F P Pt
a4 N bﬂlli.lv b—H. , TV\D\

~3-

with all the usual properties, including a local Poincaré Lemma (see [81).
Let E be a C7 vector bundle over X, then a partial connection

defined on' ¥ , or an F -connection is a linear map
D:FfE — [CF*sE

satisfying

Dds)y = $Ds + dfes
for all 4 in C®(X) , s in VE . D extends to a map

)

D: nf(E) — bﬂ.:mu . P20

where bnummg = TNFsE . D.D defines a section R of
\/pﬂ*@ msnzmv which is the curvature, and we say D is flat if .N..n o .

An example of a flat ﬂ.sno::moﬁo: may be obtained by generalizing Bott's
construction. Let . F~ o T* X% be all covectors vanishing on F .  We

define

D: MF’ —» M F*eF’

by

(Ds)3) = T448s , s TF° ge(F, (s)

This makes sense since § 1s a 1-form on X . Since = ¥ A1 S =0 for all § in
MF ., s -in TF%, the right hand side of (5) is the Lie derivative of § with
respect to ¥ . This shows D is flat. In the case ﬂ.uyﬂl , F is the

o

tangent bundle to a foliation, F  the (co-) normal bundle and D 1is Bott's

connection along the leaves of F .



Theorem 1. A Coe vector buridle E admits a flat F -connection D , where F
is integrable, if and only if it can be trivialized (locally) by sections - §

satisfying Dg=o0.

Corollary. Let X be & complex manifold, § the bundle of tangents of type
(c,4) and E a C™ vector bundle with a flat F -connection D then € has
& unique holomorphic structure such that the holomorphic sections on an open set 8

are the solutions of Ds=0 on U .

The corollary is an immediate consequence of theorem 1. Theorem 1 is
proven in §2, and further applicaetions in §3. Operators such-as D are examples
of overdetermined systems considered in [u4]. In the case at hand a simple direct
proaf of thsorem 1 can be given using estimates from [6], its only béing necessary
to check that these estimetes imply smooth dependence on parameters.

A version of these results for line bundles already appears in [8] with
applications to Kostant's theory of geometric quantization.

N. J. Hitchin, in joint work with M. F. Atiyah and I. M. Singer, has an
alternative prcof of the corollary [1], and I would like to thank him for several
useful conversations on this topic. I would also like to thank J. T. Lewis for

his valuable help and advice in the preparation of this paper.

2. Proof of theorem 1.

FA¥F is resl and integrable. We can choose, through any given
x, —
point,/\a submanifald Y of X transversal to the leaves of - FnF | Then
~— . ! =1
F'= FIV satisfies F' A F’ =0 andis integrable. If we solve
the problem on y we can parallelly translate the sections along the leaves of

FnF and so obtain a solution in a neighbourhood of == . Thus we may assume

FAnF=0.
If }:n_}f—zzo we have coordinates v, ""V& N ,

v

3;2"'/5'»4/ with F spanned by
%2‘ 3 ey ?/EQ‘M

where 2\7. = xj-+ J=1 34' , 1‘:1,.~~,M, as before. Choose a local frame

field g, ..., 8, for E on this coordinate neighbourhood and define matrices

A:f of functions by

N
v%zf" = Z (A‘j)absa sob= t N = e

@ =1

Then ¥ is flat if

gAL@fi~?Awéfj + [Aiﬂ%] =0, @j=\,”uw1 (8

A
Put A = Z Aidlij and regard V,,.. "V{, as parameters, then
=

equations (8) become

oA + A.A =0, (7)

This is the formal integrability condition for having a matrix g of functions
which is invertible and satisfying

'a"g + Ag—._-o,

(83



It is shown in [6] that, when there are no parameters, (8) always has a solution
providad (7) holds. We shall check that the proof of [6] goes through with

(=)
smooth dependence on parameters so that g is a < function of V,,..., v& ,

Koy X2 Yoy :jvv\. Then we may define

N
a=1
and-obtain a frame field t” . "tN satisfying
Dtm = 0 ) a = l,---)’\/.

This will complete the proof of the theorem.

The proof in [6] uses an explicit homotopy operator |~ for © -in a

polycylinder of radius R in the coordinates Zy ey Zon d
so= Top +.37Tg

for every  (p,q ) -form ﬁ with 9 >0 . A Holder norm -l  is defiped an

foarms on this polycylinder and it is shown that.
i < R

for some constant < C, >0 . Moreover, | All depends continuously on Ve V{/

(as parameters) and, restricting them to a fixed compact neighbourhood, we have

Al g <,

uniformly in AV ./V€

Thus the operator § —> T(A %) on matrices of functions satisfies

L TAHL < oo RIEN,

and by choosing R so that c,¢, R'< 1 ', a contraction mapping is obtained.

Then if g, is a solution of

3= % — TAg) ' ()

where @ Y’=0, we have
:ag = ——'3’\—(/4(3) = - A} + T@-(’A‘}»

= —Ag + T((3A)g) —T(A3g)
= _Agq — T(A(5g+Aq)),

Thus

g+ Ag = T(AJTg+Ag)

i - i i t have
and, since o A is a contraction, we mus

D4 + Agq = 0.
depends on 'V, ..., V. . By
! t

fMoreover, by the unigueness of fixed points, 3

choosing [f/ suitably, and modifying as in [6] we can mske sure 3 is

invertible at x , and hence in a neighbourhood of ¢ (when we have established

continuity).

§ depends differentiably on >ci,..., X\ 0 Yy o9 Yau iF A does,
from the proof in [6], when VU,..,V& are held fixed. To see that it also
depends differentiably on Vs oy VL , we observe that formally differentiating

{8) gives

8 v, = T4y %) — T(A%34w) , )

an equation of the same kind as (9).



Solutions to both equations (9) and (10) are obtained iteratively by

setting

g’fm+r /U’/ * T(A3M>

and 3 = bl 3“ v If formal differentiation inside "1  is allowed, the
N—>c0

sequence 09, /3v; converges for each 4 , uniformly in V,,--3 Vg and so the limit

exists and is continuous by standard results in analysis. ~[  is built from
integral operators acting on the variables =,,...,2.. one by one. It suffices,
therefore, to consider the case am =1 . We abbreviate V,,..., V, by v .

The operatcrs are of the form

(K§)vz) = & 598 42, WD) = [ 50504, 48543,
151=R 1glg R

The first clesrly causes no difficulties when [z| < R f In the second, the

methods of [3, p.21] allow the integrand to be improved to

W3)tvz) = §§ o) lgls-zl® ds,db,
ls1sR

But L@j 15 —~2z( 1is the fundasmental solution of the Laplacian in the plane, and
standard results from potential theory, see for example [9], imply that L’jl is
C*® if § ds. Thus T maps C~ forms to- C~ forms. This concludes the

proof.

3. Applications.
tet £ be a CT vector bundle over X B F CTXC an integrable
subbundle and D a flat F‘connectinn.‘ Define .YL'}_.CE) as in the intro-
duction. Let A" denote the sheaf associated to the preshesf W s QPF (e1W)
\

P+
and D the induced map from Ap to A . Let qu be the sheaf of germs of

-3
solutions of Ds =0O which is a subsheaf of A , then we have a sequence

O—anfc_,AO—DeA'LAL._;“.” t11)

a

Theorem 2. (11) is a fine resolution of .;? so that the cohomology groups HP(J)

are isomorphic to those of the complex

a%(g) -2 @) atE)— ..

Proof.  The sheaves AP are clearly fine, and De D =0 since D is flat.
It remains to prove that if D g=o . pin TP, W), ps>o for sone open set
WL then for each = in Ul there is an open set V in A containing x and of
in (A4 P-[/ \/} with 7@,]V = Do ., But by theorem 1 there is an open set

\/\j in WK containing o which has a local . frame field S,y Sp o for E with

DS‘{:O . Then{on \1\], %

‘L\J_
B = 1 B.®s,
a =t

and D{szo implies di':l@,‘xzo . But B,.= dFoé on

(=3

: »
with g e QF(W ,

some common niehgbourhood \/ of x , by the Poincaré lemma for dF and then

nN
oL = Z «,® S, @gives the reguired section.

A =1

Remark . Theorem 2 contains the usual de Rham and Dolbesult isomorphisms as
special cases by taking F real or _1_-><¢‘____ FeoF .

A second application generalizes some of the results of [101. Let
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X = 5/{—{ be”a homogeneous space for a Lie group &, and let :CTXC be
invariant. Then there is a subspace -p < of € 0] the Lie algebra of & )
containing R and AC{GH ~stable,which, when translated around X from the
identity coset, gives . = is closed under Lie bracket if and only if ’P is
a subalgebra, and Fois integrable if,in addition, P+ /’g is a subalgebra.
tet £ be a homogeneous vector bundle over X and gs ., g in G, s inlE
the induced action of & on sections of E .

Let %AE denote the induced

action on sections of =8 , then an ¥ -connection D in E is invariant if
V. . gs
33

for °§ in TF , s in TE and g in G .

If we differentizte the action of & on TE we get a representation
of Oj and we sxtend it to (ﬂc by linearity. For Qéi{c let EO’ be the vector
field it determines on X so that i is generated by {g“zH [ ae v} . Then

for o€+ . we have two operstions on T'E , namely a.S and VSQS . Moreover

Q‘G’S) =

Fas - ) s
for £ in CT(X) ., s in TE and a in OJQ: . Thus
a-s + VEQS , o ae P

is. Q7 (X) -linear in 'S and hence by evolution at the identity cosst eh
defines an endomorphism Y(a) of EeH . For @& -in @ this is the derivative of

the action of H -on E " defining B, since %= 0 -
=

Proposition. Y determines D uniquely, and D is flat if and only if ¥ is

a representstion of 4 on EeH'
The details of the proof are straightforward and are left to the reader.
{101 dealt with the case where X  was complex and - E holomorphic.  In the
Kostaent-Kirillov-Dixmier programme for constructing representations, subalgebras+
(polarizaticns) arise which do not correspond with complex structures.

Further

applications of the notion of flat partial connections will appear elsewhere.

1.

2.

10.
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