DIAS Access to
Institutional Repository

Title	Flat Partial Connections end Holomorphic Structures in $\mathrm{C}^{\wedge} \infty$ Introduction Vector Bundles
Creators	Rawnsley, J. H.
Date	1978
Citation	Rawnsley, J. H. (1978) Flat Partial Connections end Holomorphic Structures in $\mathrm{C}^{\wedge} \infty$ Introduction Vector Bundles. (Preprint)
URL	https://dair.dias.ie/id/eprint/957/
DOI	DIAS-TP-78-04

Flat Partial Connections and Holomorphic Structures in C^{∞} Vector Bundles

J. H. Rawnsley

School of Theoretical Physics Dublin Institute for Advanced Studies
Dublin 4, Ireland

Abstract

The notion of a flat partial connection D in a C^{∞} vector bundle E, tefined on an integrable sub-bundle F of the complexified tangent bundle Df a manifold X is defined. It is shown that E can be trivialized by local sections s setisfying $D s=0 . \quad$ The sheaf of germs of sections s of Esatisiying $D s=0$ has a natural fine resolution, giving the de Rham and Dolbeault resolutions as special cases.

If X is a complex menifold and F the tangents of type $(0,1)$, the flat partial connections in a C^{∞} vector bundle E are put in correspondence with the holomorphic structures in E.

$$
\text { If } X, E \text { are homogeneous and } F \text { invariant, then invariant flat }
$$ connections in E can be characterized as extensions of the representation of the isotropic subgroup to which E is associated, extending results of Tiras and Wolf in the holomorphic case.

1. Introduction

Let E be a holomorphic vector bundle over a complex manifold X and $T X^{\mathbb{C}}=F \oplus \bar{F}$ the splitting of the tangent bundle of X into subbundies of types $(0,1)$ and $(1,0)$ respectively. Then F is closed under Lie bracket, and there is a unique first order differential operator

$$
\begin{equation*}
D: \Gamma E \longrightarrow \Gamma F^{*} \otimes E \tag{1}
\end{equation*}
$$

such that

$$
\begin{equation*}
D(f s)=f D s+\bar{\partial} f \otimes s \tag{2}
\end{equation*}
$$

for f in $C^{\infty}(x), s$ in $T E$ and where $D s=0$ on an open set U if and only if S is holomorphic on U. If we put

$$
\begin{equation*}
\nabla_{\xi} s=(D s)(\xi), \quad \xi \in \Gamma F \tag{3}
\end{equation*}
$$

identifying $F^{*} \otimes E$ with $\operatorname{Hom}(F, E)$, then ∇_{ξ} behaves like a covariant derivative in E, but is only defined for ξ in ΓF. Moreover ∇ is flat:

$$
\nabla_{[\xi, \eta]}=\nabla_{\xi} \nabla_{\eta}-\nabla_{\eta} \nabla_{\xi}, \xi, \eta \in \Gamma F
$$

If we begin with a C^{∞} vector bundle E over X and a differential operator D as in (1), satisfying (2), we can ask if E always has a nolomorphic structure such that the solutions of $D s=0$ are precisely the (10cal) holomorphic sections of E. The answer is yes, provided the operators ∇ defined by (3) satisfy (4). This is the Corollary to the Theorem (see below). It is useful to encode the holomorphic structure as such an operator 0 or ∇ since operations on the category of C^{∞} vector bundles often extend automaticelly to the category of C^{∞} vector bundles with connections (or partial connections).

$$
\begin{aligned}
& \text { (ii) } F \text { and } F+\bar{F} \text { are closed under Lie bracket. } \\
& \text { Then according to Nirenberg }[7], X \text { can be covered by open sets } U \text { on which } \\
& \text { there are coordinates } u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{2}, x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m} \text { where, if } \\
& z_{j}=x_{j}+\sqrt{-1} u_{j}, j=1, \ldots, m, F \text { is spanned on } U \text { by } \\
& \partial / \partial u_{1}, \ldots, \partial / \partial u_{k}, \partial / \partial z_{1}, \ldots, \partial / \partial z_{m}
\end{aligned}
$$ integrable if ary manifold, $T X^{\mathbb{C}}$ the complexified tangent bundle, a subbundle $F \subset T X^{\mathbb{C}}$ is

 -[s] •\% satpunc autt otydrowiotou fo

 connection ∇^{Q} in Q such that
 For example, if K and Q are line bundles with $i: Q^{2} \longrightarrow K$ $\stackrel{』}{3}$

K
define

Let E be a C^{∞} vector bundle over X, then a partial connection
defined on F, or an F-connection is a linear map

$$
D: \Gamma E \longrightarrow F^{*} \otimes E
$$

satisfying
$D(f s)=f D S+d^{F} f \otimes s$
for all f in $C^{\infty}(X), S$ in $\Gamma E . D$ extends to a map

Theorem 1. A C^{∞} vector bundle E admits a flat F-connection D, where F is integrable, if and only if it can be trivialized (locally) by sections s satisfying $\quad D S=0$.

Corollary. Let X be a complex manifold, F the bundle of tangents of type $(0,1)$ and E a C^{∞} vector bundle with a flat F-connection D then E has a unique holomorphic structure such that the holomorphic sections on an open set U are the solutions of $D s=0$ on U.

The corollary is an immediate consequence of theorem 1. Theorem 1 is proven in 52 , and further applications in $\$ 3$. Dperators such as D are examples of overdetermined systems considered in [4]. In the case at hand a simple direct proof of theorem 1 can be given using estimates from [6], its only being necessary to check that these estimates imply smooth dependence on parameters.

A version of these results for line bundles already appears in [8] with applications to Kostant's theory of geometric quantization.
N. J. Hitchin, in joint work with M. F. Atiyah and I. M. Singer, has an alternative proof of the corollary [1], and I would like to thank him for several useful conversations on this topic. I would aiso like to thank J. T. Lewis for his valuable help and advice in the preparation of this paper.
2. Proof of theorem 1.
$\bar{F} \cap \bar{F}$ is real and integrable. We can choose, through any given noint, x, a submanifold Y of X transversal to the leaves of $F_{n} \bar{F}$. Then
$F^{\prime}=F \mid Y$ satisfies $F^{\prime} \cap \bar{F}=0$ and is integrable. If we solve
the problem on Y we can parallelly translate the sections along the leaves of $F \cap \bar{F}$ and so obtain a solution in a neighbourthood of x. Thus we may assume $F \cap \bar{F}=0$.

If $F \cap \bar{F}=0$ we have coordinates $v_{1}, \ldots, v_{e}, x_{1}, \ldots x$ m ,
y_{1}, \cdots, y_{m}, with F spanned by

$$
\partial / \partial z_{1}, \cdots, \partial / \partial \bar{z}_{m}
$$

where $z_{j}=x_{j}+\sqrt{-1} y_{j}, j=1, \ldots, m$, as before. Choose a local frame field s_{1}, \ldots, s_{N} for E on this coordinate neighbourhood and define matrices A_{j} of functions by

$$
\nabla_{\partial / \partial z_{j}} S_{b}=\sum_{a=1}^{N}\left(A_{j}\right)_{a_{b}} S_{a}, \quad b=1, \ldots, N, j=1, \ldots, m
$$

Then ∇ is flat if

$$
\begin{equation*}
\partial A_{j} / \partial \Sigma_{i}-\partial A_{i} / \partial \Sigma_{j}+\left[A_{i}, A_{j}\right]=0, \quad i, j=1, \ldots, m \tag{6}
\end{equation*}
$$

Put $A=\sum_{j=1}^{m} A_{j} d z_{j}$ and regard v_{1}, \ldots, v_{l} as parameters, then equations (6) become

$$
\begin{equation*}
\bar{\partial} A+A \wedge A=0 \tag{7}
\end{equation*}
$$

This is the formal integrability condition for having a matrix g of functions which is invertible and satisfying

$$
\begin{equation*}
\overline{\partial g}+A g=0 \tag{8}
\end{equation*}
$$

It is shown in [6] that, when there are no parameters, (8) always has a solution provided (7) holds. We shall check that the proof of [6] goes through with smooth dependence on parameters so that g is a C^{∞} function of v_{1}, \ldots, v_{l}, $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}$. Then we may define

$$
t_{b}=\sum_{a=1}^{N} g_{a b} s_{a}, \quad b=1, \ldots, N
$$

and obtain a frame field t_{1}, \ldots, t_{N} satisfying

$$
D t_{a}=0, \quad a=1, \ldots, N
$$

This will complete the proof of the theorem.
The proof in [6] uses an explicit homotopy operator T for $\bar{\partial}$ in a polycylinder of radius R in the coordinates z_{1}, \ldots, z_{m} :

$$
\beta=T \bar{\partial} \beta+\bar{\partial} T \beta
$$

for every (p, q)-form β with $q>0$. A Hölder norm $\|\cdot\|$ is defined on. forms on this polycylinder and it is shown that

$$
\|T\| \leqslant c_{1} R
$$

for some constant $C_{1}>0$. Moreover, $\|$ All depends continuously on V_{1}, \ldots, V_{l} (as parameters) and, restricting them to a fixed compact neighbourhood, we have

$\|A\| \leqslant C_{2}$

uniformly in v_{1}, \ldots, v_{l}
Thus the operator $f \longmapsto T(A f)$ on matrices of functions satisfies

$$
\|T(A f)\| \leqslant c_{1} C_{2} R\|f\|
$$

and by choosing R so that $c_{1} c_{2} R<1$, a contraction mapping is obtained.

Then if g is a solution of

$$
\begin{equation*}
g=\psi-T(A g) \tag{9}
\end{equation*}
$$

where $\bar{\partial} \psi=0$, we have

$$
\begin{aligned}
\bar{\partial} g & =-\bar{\partial} T\left(A_{g}\right)=-A_{g}+T\left(\bar{\partial}\left(A_{g}\right)\right) \\
& =-A_{g}+T((\bar{\partial} A) g)-T\left(A_{n} \bar{\partial} g\right) \\
& =-A_{g}-T\left(A_{\wedge}\left(\bar{\partial} g+A_{g}\right)\right) .
\end{aligned}
$$

Thus

$$
\bar{\partial} g+A_{g}=T\left(A_{n}\left(\bar{\partial} g+A_{g}\right)\right)
$$

and, since $T_{0} A$ is a contraction, we must have

$$
\bar{\partial} g+A g=0
$$

Moreover, by the uniqueness of fixed points, g depends on v_{1}, \ldots, v_{ℓ}. By choosing ψ suitably, and modifying T as in [6] we can make sure g is invertible at x, and hence in a neighbourhood of x (when we have established continuity).

$$
g \text { depends differentiably on } x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m} \text { if } A \text { does, }
$$ from the proof in [6], when v_{1}, \ldots, v_{ℓ} are held fixed. To see that it also depends differentiably on V_{1}, \ldots, V_{l}, we observe that formally differentiating (9) gives

$$
\begin{equation*}
\partial g / \partial v_{i}=T\left(\partial A / \partial v_{i} g\right)-T\left(A \partial g / \partial v_{i}\right), \tag{10}
\end{equation*}
$$

Solutions to both equations (9) and (10) are obtained iteratively by setting

$$
g_{n+1}=\psi+T\left(A g_{n}\right)
$$

and $g=\lim _{n \rightarrow \infty} g_{n}$. If formal differentiation inside T is allowed, the sequence $\partial g_{n} / \partial v_{i}$ converges for each i, uniformly in v_{1}, \ldots, v_{l} and so the limit exists and is continuous by standard results in analysis. T is built from integral operators acting on the variables z_{1}, \ldots, z_{m} one by one. It suffices, therefore, to consider the case $m=1$. We abbreviate v_{1}, \ldots, v_{2} by v. The operators are of the form

$$
(K f)(v, z)=\oint_{\mid \zeta 1=R} f(v, \xi) /(\xi-z) d \xi,(L f)(v, z)=\iint_{|\zeta| \leqslant R .} f(v, 5)(\zeta-z) d \zeta, d \bar{\xi} .
$$

The first clearly causes no difficulties when $|z|<R$. In the second, the methods of $[3, p .21]$ allow the integrand to be improved to

$$
(L ' f)(v, z)=\iint_{|\zeta| \leqslant R} f(v, \zeta) \log |\zeta-z|^{2} d \zeta \wedge d \bar{\zeta} .
$$

But $\log |5-z|$ is the fundamental solution of the Laplacian in the plane, and standard results from potential theory, see for example [9], imply that L'f is C^{∞} if f is. Thus T maps C^{∞} forms to C^{∞} forms. This concludes the proof.
3. Applications.

Let E be a C^{∞} vector bundle over $X, F \subset T X^{\mathbb{C}}$ an integrible subbundle and D a flat F-connection. Define $\Omega_{F}^{P}(E)$ as in the introduction. Let A^{p} denote the sheaf associated to the presheaf $U \mapsto \Omega_{F}^{P}(E \mid U)$ and D the induced map from A^{p} to A^{p+1}. Let $\$ S$ be the sheaf of germs of solutions of $D_{S}=0$ which is a subsheaf of A^{0}, then we have a sequence

$$
\begin{equation*}
0 \rightarrow \otimes \subset A^{\circ} \xrightarrow{D} A^{\prime} \xrightarrow{D} A^{2} \rightarrow \ldots \ldots \tag{11}
\end{equation*}
$$

Theorem 2. (11) is a fine resolution of $\mathcal{\&}$ so that the cohomology groups $H^{p}(\theta)$ are isomorphic to those of the complex

$$
\Omega_{F}^{0}(E) \xrightarrow{D} \Omega_{F}^{1}(E) \xrightarrow{D} \Omega_{F}^{2}(E) \rightarrow \ldots
$$

Froof. The sheaves A^{P} are clearly fine, and $D \circ D=0$ since D is flat. It remains to prove that if $D \beta=0, \beta$ in $\Gamma\left(\alpha^{p}, U\right), p>0$ for some open set U then for each x in. U there is an open set V in U containing x and α in $\Gamma\left(A^{P-1}, V\right)$ with $\beta \mid V=D \alpha$. But by theorem 1 there is an open set W in U containing x which has a local frame field s_{1}, \ldots, s_{N} for E with $D s_{i}=0$. Then, on W.

$$
\beta=\sum_{a=1}^{N} \beta_{a} \otimes s_{a}
$$

with $\beta_{a} \in \Omega_{F I W}^{P}$, and $D \beta=0$ implies $d^{F} \beta_{a}=0$. Eut $\beta_{a}=d^{F_{\alpha}}{ }_{a}$ on some common niehgbourhood V of x, by the Poincaré lemna for d^{F} and then
$\alpha=\sum_{a=1}^{N} \alpha_{a} \otimes S_{a}$ gives the required section.
Remark. Theorem 2 contains the usual de Rham and Dolbeault isomorphisms as special cases by taking F real or $T X^{\mathbb{C}}=F \oplus \bar{F}$.

A second application generalizes some of the results of [10].
$X=G / H$ be a homogeneous space for a Lie group G, and let $F \subset T X^{\mathbb{C}}$ be invariant. Then there is a subspace $p \subset$ of $\mathbb{C}(\sigma$ the Lie algebra of G) containing K and $A d H$-stable, which, when translated around X from the identity coset, gives F, F is closed under Lie bracket if and only if p is a subalgebra, and F is integrable if, in addition, $-p+\bar{p}$ is a subalgebra. Let E be a homogeneous vector bundle over X and $g \cdot s, g$ in G, s in ΓE the induced action of G on sections of E. Let g. \mathcal{F} denote the induced action on sections of F, then an F-connection D in E is invariant if

$$
g \cdot\left(\nabla_{\xi} s\right)=\nabla_{g \cdot \xi} g \cdot s
$$

for ξ in $\Gamma F, S$ in ΓE and g in G.
If we differentiate the action of G on ΓE we get a representation
of σ and we extend it to $g g^{\mathbb{C}}$ by linearity. For $a \in \mathcal{J}^{\mathbb{C}}$ let ξ^{a} be the vector field it determines on X so that $F_{e H}$ is generated ty $\left\{\xi_{e H}^{a} \mid a \in p\right\}$. Then for $a \in p$ we have two operations on $T E$, namely $a \cdot s$ and $\nabla_{z^{a}} s$. Moreover

$$
a \cdot(f s)=f a \cdot s-\xi^{a}(f) s
$$

for f in $C^{\infty}(x), s$ in ΓE and a in $g^{\mathbb{C}}$. Thus

$$
a \cdot s+\nabla_{z^{a}} s, a \in p
$$

is $C^{\infty}(x)$-Iinear in S and hence by evolution at the identity coset eH defines an endomorphism $\gamma(a)$ of $E_{e H}$. For a in $\bar{\Omega}$ this is the derivative of the action of H on $E_{e H}$ defining E, since $\Sigma^{a}=0$.

Proposition. γ determines D uniquely, and D is flat if and only if γ is a representation of p on $E_{e H}$.

The details of the proof are straightforward and are left to the reader.
[10] dealt with the case where X was complex and E holomorphic. In the Kostant-Kirillov-Dixmier programme for constructing representations, subalgebras p (polarizations) arise which do not correspond with complex structures. Further applications of the notion of flat partial connections will appear elsewhere.

1. Atiyah, M. F., Hitchin, N.J., Singer, I. M. Self-duality in four-dimensional Riemannian geometry. Oxford preprint, 1977.
2. Bott, R. Lectures on characteristic classes and foliations. Lecture Notes in Mathematics 279, Springer-Verlag, Eerlin-Heidelberg-New York, 1972.
3. Chern, S. S. Complex manifolds without potential theory. Mathematical Studies No. 15, Van Nostrand, Princeton, N.J., 1967.
4. Goldschmidt, H., Spencer, D. Submanifolds and over-determined differential operators. Complex analysis and algebraic geometry, ed.
W. L. Bailey and T. Shinda. Cambridge University Fress, Camoricge. 1977.
5. Hitchin, N. J. Harmonic spinors. Advances in Math. 14 (1974), 1-55.
6. Nijenhuis, A., Woolf, W. Some integration problems in almost-complex and complex manifolds. Annals of Math. 77 (1963), 424-489.
7. Nirenberg, L. A complex Frobenius theorem. Seminars on analytic functions Princeton University Press, Princeton, N.J., 1957, pp. 172-185.
8. Rawnsley, J. H. On the cohomology groups of a polarization and diagonal quantization. . Trans. Amer. Math. Soc. 230 (1977), 235-255.
9. Sternberg, W., Smith, T. The theory of potential and spherical harmonics. University of Toronto Press, Toronto, 1961.
10. Tirao, J. A., Wolf, J. A. Homogeneous holomorphic vector bundles. Indiana Univ. Math. J. 20 (1970), 15-31.
