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The notion of a fiat partial connaction D in a C vector bundle C,

atined on an insgrable sub-bundle F of the complexified tangent bundle

of a manifold X is definod. It is shown that C can ba trivialized by

local Pct”nns s caisfying Cs = 0. Ths sheaf of germs of sections s of

C aLisying Os C has a natural fins resolution, giving the da Rham and

Crlbsault resolutions as special cases.

If X is a complex manifold and F the tangents of type (0, 1), the

flat orcial connaction= in a C vector bundle C are put in correspondence

wth the balsmorphlc structurss in E.

If X, C are homogeneous and F invariant, then invariant flat

ccrnecticn in C can be characterized as extensions of the representation

c tom isotropic subgroup to which C is associated, extending rosults of

Tiras and tslf in ths holomorpnic case.

1. Introduction

Let E be a holomorphic vector bundle over a complex manifold and

T_Xc F F the splitting of the tangent bundle of X into subbundles

of types (o, ) and (1,0) respectively. Then E is closed under Lie

bracket, and there is a unique First order differential operator

D FE — FF*®E
(I)

Dccs) = .cDs +

S (Ds)() , FF,

identifying F’ E with ‘l-\o-et (F, E) then behaves like a covariant

derivative in E , but is only defined for in r florooverV is flat:

=
,

(a)

If we begin with a 000 vector bundle E over X and a ciifferential

operator as in (1), satisfying (2), we can ask if E always hos a noloruc phic

structure such that the solutions of are precisely the (lncoi)

holomorphic sections of E . The answer is yes, provided the operators 7

dafined by (3) satisfy (4). This is the Corollary to the Theorem (See helowL

It is useful to encode the holomorphic structure as such an operator D or V

since operations on the category of C° vector bundles often extend automatically

to the category of vector bundles with connections (or partial connections).
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Abstract

such that

for in c’°(x) , S in FE

only i-F 3 is holomorphic on U.

and where D5=Q on art open sat U if and

If we put

(3)
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Theorem 1 A vector bundle E admits a flat F —connection 0 , where F

is integrable, if and only if it can be trivialized (locally] by sections S

satisfying

Coro]Zorv. Let X be a complex manifold, F the bundle of tangents of type

(o,j end a vector bundle with a flat s—connection D then has

a unique holornorphic structure such that the holomorphic sections on an open set U..

are the solutions of sO on U

The corollary is an immediate consequence of theorem 1. Theorem I is

proven in §2, and further applications in §3. Operators such as are examples

of overdetermined systems considered in [4]. In the case at hand a simple direct

proof of theorem 1 can be given using estimates from [6], its only being necessary

to chece trot oness esti—etea imply smooth dopendence on parameters.

A version of these results for line bundles already appears in [8] with

applications to Kostant’e theory of geometric quantization.

N. 3. Hitchin, in joint work with N. F. Atiyah and I. N. Singer, has an

alternative proof of the corollary [1], end I would like to thank him for several

useful conversations on this topic. I would also like to thank 3. T. Lewis for

his valuable help and advice in the preparation of this paper.

2. Proof of theorem 1.

F nF is real and integrable. We can choose, through any given

poInta submanifold Y of transversal to the leaves of . Then

satisfies F ñ F’ 0 and is integrable. If we solve

the problem on ‘y’ we can parallelly translate the sections along the leaves of

F n F and so obtain a solution in a neighbourhood of .. . Thus we may assume

Fo

If F n — o we have coordinates V,,..,
,.. x

with F spanned by

where ÷

field ç
.

se,, for E’

of functions by

t EA,A] =0,

Put A —
and

equations (6] become

regard V.. .,Vt as parameters, then

A÷ AAA —0.

This is the formal integrahility condition for having a matrix of’ functions

which is invertible and satisfying

• =(,..,4’vt, as before. Choose a local frame

on this cooroinate neighbourhood and define matrices

Then 7’ is flat if

= (A3)s
, b

(7]

(8]
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It is shown in [6] that, when there are no parameters, (8) always has a solution Then if is a solution of

provided (7) holds. We shall chack that the proof of [6] goes through with

smooth dependence on parameters so that is a C function of V11..., VL =
— r(A )

•

• •
, . • •,

. Then we may define

N

b 1,., N where 311.-’,Q, wa have

= -A) - -
- F(A))

and obtain a frame field •

•
satisfying

=
— T((A))—T(AA)

— o ,—

—A —T(A(÷A)).
Thus

This will complete the prcof of the theorem.

Tha proof in [6] uses an explicit homotopy operator for in a + A TC A(+ A

polycylinder of radius R.. in tne coordinates z,. .-,Z:

and since T. p is a contraction, we must have

—
Fi ÷.-rp

° =0.for every Cp, q_) —form with > o . A Hlder norm • is defined on

fcrms on this polycylinder and it is shown that.
lioreover, by the uniqueness of fixed points, depends on V ,.

• By

B m choosing L suitably, and modifying as in [6] we Con make sure is

invertible at , and hence in a neighbourhood of [when we have establishec

for sore constant C1 >o . lioreover, ItAL depends continuously on V...)\’,
continuity).

(as parameters) end, restricting them to a fixed compact neighbourhood, we have
. depends differentiably on

, ,.

if A does,

from the proof in [6], when V11...,V are held fixed. To see that it alesIt Alt

depends differentiably on v1,...1 v , we observe that formally differentiating

uniformly in V1 ,.

. .

V
. 9 gives

Thus the operator .-
— T(A &) on matrices of functions satisfies

/v T(A/vJit T(A) II . C, ç R II III,

and by choosing
..

so that c1c R. K 1 , a contraction mapping is obtained,
an equation of the same kind as (9).



-8— —9—

= ‘(‘-z a (LJ)Cv, ) ;c]4’Z)cAd.

3. Applications.

Let E be a C vector bundle over F cT.XE an integrable

subburidle and D a flat F—connection. Define fl_FCE) as in the intro

duction. Let denote the sheaf associated to the presheaf LA— &2. C& ((A)

and D the induced map from 4 to 4 . Let be the sheaf of germs of

solutions of Ds0 which is a subsheaf of , then we have a sequence

o — c., C .4’ 4. A k—. (1 )

Proof. The sheaves are clearly fine, and D =o since D is flat.

It remains to prove that if
,

p in A), >o for some open set

_,( then for each in U there is an open set in U. containing x. end .

in F (A ‘, \/ ) with V . But by theorem I there is an open set

in U. containing which has a local frame field for wtth

Ds’ = . Then on vi

Solutions to both equations (9) and (10) are obtained iteratively by

setting

= q-’ +

end = . If formal differentiation inside f is allowed, the

sequence converges for each 1. , uniformly in V,,.. ,V and so the. L,.vmit

exists and is continuous cy standard results in analysis. F is built from

integral operators acting on the variables z, , . . one by one. It suffices,

therefore, to consider the case - = I . We abbreviate V1
,. .

., V by V

The cperatcrs are of the form Theorem 2. (11) is a fine resolution of so that the cohomology groups

are isomorphic to those of the complex

0 flCE

The first clearly causes no difficulties whsn ( K . In the second, the

msohcds of [3, p.21] allow the integrend to be improved to

(L’$)C,z) = 5 Cv,) (_z

But —z( is the fundamental solution of the Leplecien in the plane, and

stsrderd results from potential theory, see for exemple [9], imply that L’J is

C.° if is. Thus T maps C. forms to C forms. This concludes the

proof.

/so_

with S22. and implies But = on

some common niehgbourhood V of , by the Pnincar lemma for and then

= g gives the required section.

Remark. Theorem 2 contains the usual de Rham and Dolbeault isomorphisms as

special cases by taking F real or r

A second application generalizes some of the resuits of [101. Let
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X /H be a homogeneous space for a Lie group G , and let FcTKC be References.
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defines an endomorphism Y(a.) of . For a. in this is the derivative of 9. Sternberg, W., Smith, T. The theory of potential and spherical harmcnics.

the action of on defining E, since Q
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Proposition. determines D uniquely, and D is flat if and only if I is 10. Tirao, 0. A., Wolf, 0. A. Homogensous holomorphic vector bundles. Indians

a representation of on ER. Univ. Math. 0. 20 (1970), 15-31.

The oetails of the proof are straightforward end are left to the reader.

[10] dealt witn the case where X was complex and E holomorphic. In the

1ostant-Kirillov-Dixmier programme for constructing representations, subalgebras

(polarizaticns) arise which ao not correspond with complex structures. Further

applications of the notion of flat partial connections will appear elsewhere.


