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ABSTRACT

The autacorralation functions for spherical harmonics

arising from the rotational Brownian motion of the linear

modal of a polar molecule are calculated by using Langevin

equations end the stochastic averaging method employed by

Ford, Lewis and licConnell for the analogous problem with the

spherical model.
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1. introch,ct:ion

The rotational Brownian motion, with inclusi on of inorti a] efforto,

of the linear model of a polar molecule - also called the needle model - ens

first investigated in detail by Sack [1957]. He constructed a Fohker—Planok

Kramers equation in the space of the two angles specifying the orientation Of

the mnlecule and of their related angular velocities. Sack expressed the steady

state linear response to en, alternating field as a continued fraction which is

a function of the frequency, the friction constant B and the munont of inertia I

of the molecule about a line perpendicular to it through its middle puint.

The steady state response Ic related to the nutocorrol ation functi on of

the cosine of the angle betwsen the axis of the dipole end thu dlrzctinn of the

electric Field through the Kubo equation [c-f. Sceife 1571 nectinu 2]. In

present paper eutocerrelation functions for spherical harmonica x esu’ti ng -boo

the motion of the molecule are expressed as exponontials, the exponents being

series in power of kT/I(32 up to the third power. The method of invest:i{mtion

is rather similar to that adopted for the rotational Brownico notion of a sp.ore

in Ford, Lewis and McConnell 1978, to ha referred to briefly as FLM. Homevur.

the absence of spherical symmetry precludes the use of the graphical method and

for this reason it would he tedious to take the calculation as -far as tenon

proportional to (kT/IS2J.

The motion is investi gated by employing Euler-Lengavin rqi ‘a bioro referred

to coordinate axes rotating with the needle, which is rog-niihid as an extren sly

thin spheroid with zero component of angular velocity about its line of syirrantry.

Correlation functiuns for components of angular velocity perpendIcular to this

line are given, and they lead to the autacorrelation -functions for sphcricol

harmonics. The results are in agreement with that of Sack, when the her-manic is

the cosine function.
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2. Equations of motion of the linear rotator
3. Averaging method for the rotation operator

Let us write
We picture the rotator as a body with zero angular velocity about its

axis. We take rotating coordinate axes with origin at the centre of the body,

the third axis being along the line of symmetry and the other two being perpen

dicular to the line and to one another. We denote by I the moment of inertia

about the first and second axes. The Euler-Langevin equations of motion are

J/3t -J1)

1 -

where 1A1(t), IA,(t) are the components of the random driving couple due to the

surrounding medium and the frictional couple is I times the angular velocity.

Equations (1) simplify to

— , ÷ — (2)

A1(t), A2(t) are Gaussian white noise terms satisfying

<A ii A ()) c g(
(j 1,2)

0) ( /,2)

the constant 2 being the same for i = 1 and i = 2 on account of the symmetry of

the body. We assume that the Brownian motion has reached a steady state. Then

by adapting the Ornstein-Uhlcnbock theory [cf. Lewis, 1cConnell and Scaife 1976

eq. (12) and (14)] we can write for the correlation function of the components

of angular velocity

T g.
(3)

— cot(t)7 1ç’(e)Y
• (

which is the operator for the rotation of coordinate axes [cf. Rose

Here , , are the angular niomentum operators divided by

(t-) , )flt) are the Euler angles of the rotated system.

these angles such that (o) 0 , and thence

identity operator. We take the rotating axes to be the moving

the previous section for the linear rotator. The m m’ -element of

basis consisting of the spherical harmonics Yj (fl(o) (a))

j1 -j is written f/f) F’ 1&)) and

,1y *(
(k))1t))

F1 fit))

The operator R(t,0) satisfies the relation

L(t,/ 1)
(6)

where 7 are the angular momentum operators divided by for the

rotating coordinate system. The stochastic operator c (2 i

satisfies assumptions I and 3 of FLtI page 121 for the present problem. This is

sufficient to permit us to write

d 4
..

(7)

(1)

1957 p.50].

- and

We chooce

RCa, 0) is

axes chosen

R(t,0) for

with s

the

in

the

(5)

where on account of the presence of the imaginary coefficient in (6) we have from



V

4. Ca)culation of 122(t1).O4(t1),o6(t1)

(8)

ft) fi Jc/fi {1234> - 12)<34> - <13><24> - 14><23> } (9)

‘): fC((tJd1jd(jd [<123456> - <12><3456> - <13><2456>

— <14(2356> — <15><2346> — <16><2345> — <1234><56> — <1235><46>

- <1245)<36) - <1345><26> - <1236><45> - <1246)<35) - <1346)K25)

— <1256><34> - <1356X24> — <1456><23>

+ 212><34><56> + 2<12><35><46> + 2<12><36><45>

+ 2(13><24)’<SU> + 2<13><25<46> + 2<13><26’><45>

+ 2<14><23><56> + 2K14><25><36> + 2<14><26>(35>

+ 2c15>(23>K46> + 2<15>K24><36> + 2K15><26><34>

+ 2<16><23)’<45> + 2K16><24><35> + 2K16><25><34>]

In the above brackets an integer i is an abbreviation for

so that, for example,

<IQ 21)tZ1> <
T (j

where we use (3) and the knowledge that in the above integrals t1 t2 t3

t4 t5 t6 . It is clear that

<12),34> = K34><12>

etc., and this has allowed us to combine terms with the structure <“>< >c >

in (10). On the other hand the absence of J3 in (1) prevents the reduction

of equations (26) and (30) of FIJI to (29) and (31), respectively, which was

possible for the rotating sphere.

and is the totally antisymmetric Levi Civita symbol. The - i appears

on the right hand side of (13) because the -operators refer to rotating axes

[cf. Van Vleck 1951]. We adopt henceforth the convention that a repeated suffix

is summed over I and 2 only, and so from (15)

While a multiple of the identity operator, is not and this causes

complications not present in the spherical top model. Since commutes with

we shall endeavour to express all sums of products of 74i that occur in

future calculations in terms of and . Thus we write (12) as

— ç(f_)f

equations (25), (26) and (30) of FLM ()

We proceed to calculate iT (t,),5 (t,),Jl fri) . From (8) end

(11)

-

The , , satisfy the commutation relations

2

-y= EAei

J j(j+i)I

where

(10)

(11)



We examine the integral on the right hand side of (9). Wa have

()lr 7, J•

On using the well—known result for a continued product of an even number of

centred Gaussian random variables we deduce that

<I 3> (t () f)>

+ i;> ) Jj
wft). )t(- 7.

+ 7 77
(18)

* I 72.

on noting the Knoncckor delta in (3). This equation then gives

::

From (11) we may deduce that

/)7\1/

)2> >> t 41>U> ( 2e J

and therefore

<1234> - K12><34> - K13’)24> - 14>K23>

£ _p jc)(/y
J÷22Y t) (19)

To express sums of products of in tes of 7 and it will be

found helpful to use the following relations which are consequences of (13) and

(16):

- 7 2 7

)
y Z

t

72(7

73 7 7L)

(( 733 — Y) jj-(+
.,..

- Zt

t 7 J3 /3) +
çL

It will follow from (9) (19) and (20) that

t tt

_

cyjr / dtj -fl’I -

It)) -

r ri r—1

<1234) <1234>+<1234?+<1234>.

The linking indicates the members with :z,- whose subscripts are made equal

before summing over the . We now write

V.1.1

Let us calculate 3 L. f t from (10) in a similar manner. We employ th

linking notation of FLfI which means that, for example, we would write (18) as

ri r r, r r—i• r-

__

<123456) <123456> * <123156> + <1234S6 + <123456> + <123156>

r ri r-i ri r—i r—-1

+ <123456> + <123456> + (123456> + <123/ISO> + 4123450>

r--—
+ <123456) + (123456) + (123456> + <123456> + (123456>

The calculatIons are simplified by noting that the five terms whIch have eIther

12 or 56 linked sum to

412)K3456> + <1234) (56> — <12)<34)<56) .



(T)3{

{ 2(Y’)3—2’i

Finally we collect the <“> <•> <“> contributions. These arise from

such terms in (10), (23) and (26), and their sum is

<13>25><46> + <13><26)<45’ + <15)<23)(46> + <16)<23’><4S>

.+ 2(1LI>25><3B’> + 2<14><26><35> + 2<15’><24>’36> (29)

+ 2<15><26><34> + 2<16)<24<3’> + 2<16)<25><34>

‘3—1 )

The sum over the I for each term of this is , that

The first four terms have time dependence P(t34 and the rest

have time dependence . Hence (29) is equal to

On summing we obtain from (10), (25), (28) end (30) that

2(&)

(t1)
- (4’YIL(7 1j1.1-F -t -)

_,(7(+ ) (31)

j.

The surviving terms add up to

-2()((it3+tJ1] J-e

+

(24)

After repeated applications of (20) it is found that (24) is equal to

2 ‘a7_p(+t
+tf-c)L4lzy) 77j2q/7j

(25)
71

so that <123456> is the sum of the expressions (23) and (25).

We next calculate the sum of the - <—> <•‘> and — <•“•> <•> terms

in the integrand on the right hand side of (10). Of the fifteen such terms two

are cancelled by terms in (23). For the remaining thirteen we put

As far as the sums over the in the terms on the right hand sides are

concerned, <•> yields 1,7 and <•> <‘> yields

and the sum of these is

:)3— 2i +
-

(27)

The sum of the contributions from the <••> <••‘•> and <““> <“> terms on the

right hand sides of (26) is from (11) and (27)

(28)

- <13X2456> = - <13)<24><5E3> - 413>(2456> - 413>K2456>

-<14>(2358> - <14>K23><56> - (142356> - <14><236>

- <15><2346> = - <15>(23>(46> - <15><2346> - <15><2346>

- <16)<2345> = - <16><23>K45> - <16><2345> - <16><2345>

-

— <1235><46> = — <12><35><46> — <1235>(46> - <12357<46>

-<1245><36> = - <12)K45><36> - <12457<36> - <1245><36?

- <1345><26> = - <13><5><26> - <1345><26> - <1345>26>

- < 1236><45> = - <12><36>(45> - <1236><45> - <1236><45>

- <1246><35> = - 12>(46><35> - <12467<35> - <12467<35>

- 1346>(25> = - <13>46><25> - <1346)<25> - <13467<25>

..

— <1256>34) = — <12><SS><34) — ‘<1256’>(34> — <1256><34>
__J

.‘

— <1356><24> = — <13><56>(24> — <13567<24) — <13567<24>

(26) +)2
(\

y_i÷+

(30)

— <1456X23> = — <14><56><23) <14567<23> <14567(23>



5. Correlation functions for spherical harmonics

We see from (7). (17), (21) and (31) that

rr
tt

(j

+ ‘‘ 3

This can be integrated immediately to give

2.
.‘ ‘‘

<(ç o)> p{- L4-] 1r±( )(27
2.

(1

,,
z.] K’)

on recalling that R(O,O) is the identity operator. The time dependent terms

on the right hand side are defined in equation (62) and Appendix of FLM. Now

by definition

(32)

f(f fi10) ffo)df ( )<10>Y Piow). (33)

In substituting for < R(t,o)> from (32) we remark that, since commutes with

J.. ‘

[of. Brink and Satchler 1975 p. 26],

73 Yi1,;o,) 1rii) 1

because in the present model the th.Lrd component of angular velocity vanishes.

We may therefore replace every by zero and every 7 by jCj + 1) times the

unit matrix in 2j + 1 dimensions. Thus

(a)

< ‘‘F?Y
epj(j*L ..

where we have employed the orthonormality property of the On the other

hand the stochastic averaging process denotbd by <“> is independent of the

configuration space variables, and so we have from (33)

)[f& fcfff) df(o) < (p(oi1)ft) ‘

2..1T -71

I(O)j())PLf43) < y.
)‘l I

jQ f)du)< ),.ie

since

fi, T1)is real. The last integral combines the
hi m’

stochastic avoraging process with an averaging over the initial configuration,

and may properly be celled the correlation function of the spherical harmonics

and . This vanishes for in’ m, and for in’ in it is equal to the

exponential in (34).

For applications to the theory of dielectric relaxation we put j 1,

in m’ 0 in (34) and using (5) obtain

p I - ()
()

—4 (ci2 It) ) () Jf1 /)J.3
where is the angle between the orientation of the dipole axis at time t

and time zero. On expanding the last exponential and employing eq. (A.5) of

FLtI we find that

24 (7’ (..‘J
-.

) LZ, i7 (&1I i +

it,
/47- P

- )) Z i f6i’ + fie/b7i..



We make a Laplace transform of this equation referring again to the Appendix of I am greatly indebted to Professors G. W. Ford and 3. T. Lewis for

FLN helpful criticism.

This may be

by Sack [1957 eq. (2.26)], which is equivalent to

I J<[()>tdt
- /

— rr

1 3+/f

For the case of the sphere [of. FLM eq. (63), (80), (81] and Appendix]
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This agrees with the result for the linear molecule as far as terms in the

exponent proportional to . It would be of interest, though laborious,

to extend the calculations for the linear molecule to terms proportional to

so to see whether the j-dependonce of the exponent in (34) will

continue to be simply j(j + 1)

(7
i 2

-ç
-

c2j
/

i\I + — (35)

(} L P) p)3(s*zF c()

/

____

4- +cc-c+fl) (zpCc3F)

compared with the result deduced from a Fokker-Planck-Kramers equation

+ -

I +/ tw/f

(1+ t/fl

On expanding the continued fraction as a series in powers of jT/zt we find

agreement with the value of the left hand side deduced from (35) with
‘ .




