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CORRELATICN FUNCTIONS FOR SPHERICAL HARMONICS RESULTING

FROM ROTATIONAL BROVWNIAN MOTION OF A LINEAR MOLECULE

. JAMES McCONNELL

Dublin Institute for Advanced Studies

Dublin 4, Ireland

ABSTRACT

The sutocorrelation functions for spherical harmonics
arising from the rotational Brownian motion of the linear
model of e polar molecule are calculated by using Langevin
zquations and the stochastic averaging method employed by
Ford, Lewis and McConnell for the analogous problem with the

spherical model,

TABLE OF CONTENTS

9. INTRODUCTION
2. EQUATICONS OF MOTION OF THE LINEAR ROTATOR

3. AVERAGING METHOD FCR THE ROTATION OPERATOR

4. CALCULATION OF 9(2)[t11, QL4)[t1), Q[S)[t1)‘

5. ‘CORRELATION FUNCTIONS FOR SPHERICAL HARMONICS

Page
II
III
v
VI

XI

1. Introduction

The rotational Brownian motion, with irclusion o+ inertial effecls,

of the linear model of a polar molecule - also called the needle model - was

first investigated in detail by Sack [1957]. je constructed a Fokker-Planck-

Kramars equation in the space of the two anglas specifying the orismtation of

the molecule and of their related angular velocities. Sack expressed the steady
state linear response tou an alternating Tield as a continued fraction which is

a function of the frequency, the friction constant R and the moment of inertia I
of the molecule about a line perpendicular to it through its middle point.

The steady state response is related to the autocorrelation function of
the cosine of the angle between the axis of the dipole and the diresction of the
electric field through the Kybo equation {cf. Scaife 1971 sectinn 2J. In tha
present paper autocarrelation functions for spherical harmonics resulting frum
the motion of the molecule are expressed as exponentials, the exponents bioing
serdes in powar of kT/IB2 up to the third power. The method of investigation
is rather similar to that adopted For the rmtationai Orownian motion of a sphere
in Ford, Lewis and McConnell 1676, to be referred to briefly as FLM. {owaver,
the absence of spherical symmetry precludes the use of the graphical method andg
for this reason it would be tedious to take the calculatinn as far as terms
proportional to (KT/IB2)%.

The motion is investigated by employing Euler-Langevin eruations referrsd

to coordinate axes rotating with the needle, which is regarded as an extremely

thin spheroid with zero component of angular velocity about its line of symmetry.
Correlation functions for components of angular velocity perpendicular to fhis
line are given, and they lead to the autocorrelation functions for spherical
harmonics. The results are in agreement with that of Sack, when the harmonic is

the cosine function.
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2. Equations of motion of the linear rotator

WeApicture the rotator as a body with zero angular velocity about its
axis. We take rotating coordinate axes with-crigin at the centre of the body,
the third axis being along the line of symmétry and the other two being perpen-
dicular to the line and to one another. We denote by I the moment of inertia

about the first and second axes. The Euler-Langevin equations of motion are
T ==Tpw + 1AW
JREAN “I/;wz + ZA:_“’),

where IAq(t). IA,(t) are the components of the random driving couple due to the

1

surrounding medium and the frictional couple is IR times the angular velocity.

Equations (1) simplify to

G- fon + Oy Py WA "

A1(t], Azft] are Gaussian white noise terms satisfying

CAied Mty = 285 566D, i1z
(A =0, (¢=12)

the constant c2 being the same for 1 = 1 and 1 = 2 on account of the symmetry of
the body. We assume that the Brownian motion has reached a steady state. Then
by adapting the Ornstein-Uhlenbeck theory [cf. Lewis, McConnell and Scaife 1875

eq; (12) and (14)] we can write for the correlation function of the components

of angular velocity

e A /T gt Lt
<w‘-(r,£>w)-(a)_> = iil— 5‘.}:4 Flie ‘{ (3)

3. Averaging method for the rotation operator
Let us write
) ~ alt)] ¢ (6)79 —ople) - .
{R(C‘)o> = e o f € 777 (4)

>

which is the operator for the rotation of coordinate axes {[cf. Rose 1957 p.50].
Here j,c , 7‘1 ’ 7} are the angular momentum operators divided by ;f: and

5{ (f)} ﬁ’(t)) /t} are the Euler angles of tha rotated system. We choose
these angles such that ol {0) = ﬂ/o) - )//Q) = , and thence R(0, 0) is the
idgntity operator i. We take the rotating axes to be the moving axes chosen in
the previous section for the linear rétator. The m m'~element of R(t,0) for the

basis consisting of the spherical harmonics \{;S / 5(0) , & h))) with s = j,
3™1s aees =3 is written D) (a(/f‘) /(Yé'),
mm' ’
47T

‘X
D, o,y = Jzper ¥, (pto,400)
Do)o(ai /H,f/f./,)/‘/n) = .PJ[C.;; {g/a-)) (5]

6D and

. The operator R(t,0) satisfies the relation

dp/j:) = c'(j,w,/c*) +Z%“J> R/CZO))

(6]

where tl N ;7; N ;73 are the angular momentum operators divided by %Zf for the
rotating coordinate system.  The stochastic operator ( (r:Z w (E) i”:ZLA}L/éﬂ>
satisfies assumptions 1 and 3 of FLM page 121 for the.present problem. This is

ufficient to permit us to writa

LRI (s s T+ )R>,

whére on account of the presenca of the imaginary coefficient in (6) we have from



equations (25), (26) and (30) of FLM

() G . (&
St -[ 4t <2

& & L
5 “"/[L):/f/{;/c/f;/ Al {Q1238y - A2y <3y - A - AB23Y ) (9)
) 4 4 e .

e 6 6 6 &
Y ¢ A
ﬂ(‘)/c)_. -—/Qcﬁ';)‘of/l‘;fo‘/%/ac/l‘(ldé [<123456> - <127(3456% - (13)<2456>

- 14)<{2358Y - {157<2348> -~ {167£2345% - <1234><56) - {12357<46>

€1245)¢368y ~ <13459<26> ~ {1236Y<45> - <1246)(35) - (13467425

- {12567<34> - 13567424y - 145674237

+24127434> <567 + 2<12><35><46§ + 2422436y <457 (10}
+ 20137<247<567 + 24137257 46> + 2<13726> 45>

+ 2414y {23)¢56) + 2<14><25‘><35> + 214> 28> (35>

+

2€159(23>48Y + 2157€247 4367 + 2157 (267{347

+

2€162€232€45% + 241674247 (35 + 2<1s><25><34>] ,

In the above brackets an integer £ is an ébbreviation for :Zlg(g)fglga{gJ

so that, for example,

12> = < Tuter o)y LT 0,60+ T, wileg)>

ST R

2

where we use (3] and the knowledge that in the above integrals t, 2 t, 2 t_, 2

t4 > ts 2 ts . It is clear that

Q2) B4y = L34p<127
etc., and this has allowed us to combine tefms wifh the structure <+*><se><ee>
in (10). On the other hand the absence of J3 in (1¢) prevents the reduction
of equations (26) and (30) of FLM to (29) and (31), respectively, which was

possible for the rotating sphere.

Vi

(S)(t )

4, Calculation of 9(2][t1]. 9[4)(t1), Q 1

f2) 47 61 .
We proceed to calculate yfl. /C;>)~ﬂl /r/),JR ) . From (8} &nd

1 .

o NG R
?ﬂ[v/fl) e /f%’/j, ¢7t>/o~e"ﬁ/(&’ lL‘)c(Y‘z.

(12}

The i]| ) :ZL B 173 satisfy the commutation relations

j,g;jp’jf j,g = - ¢ ,\Z., g,u,\jm

(13)

JL: )()'*’)z\ (14)

where

+ 7; (15)

and ng is the totally antisymmetric Levi Civita symBoi. The - i appears

= n
on the right hand side of (13) because the :{g -operators refer to rotating axss
[cf. Van Vleck 1851]. We adopt henceforth the convention that a repeated suffix

is summed over 1 and 2 only, and so from (15)
2 2z 2 :
Jo =7 -7, (16)

2 : 2> .
While :7 is a multiple of the identity operator, 7; is not and this causes
T
complications not present in the spherical top model. Since :7 commutes with
’ b}
-33 » we shall endeavour to express all sums of products of :Zé'ﬂ that occcur in

s 1
future calculations in terms of ;7 and :@ . Thus we write (12) as

e |
gﬂ-m('f‘.) =7 {%‘/ ((77—_’73)/ fﬁﬁ{q rt)dl:. (17)



Wa examine the integral on the right hand side of (9). Wa have

L1234 = < Jowiled Jpuogl®) [l ] et (7.77-77,1.)= 7%27,

: - ) ? .
= <W;((‘,)w’glh) Wylts) w0, 180 7‘74 LJ’\. t . ‘ o 7ﬁ7@ /{ZTP (7 “7) j+ 7

e A A v ) AR A

On using the well-known result for a continued product of an even number of’

2g T (72)2 J'L 7‘&
centred Gaussian random variables we deduce that 7{ 7; j,ﬁ = 7 '/_3 AT - ; 3 {
< 2 2\*
234> = /(w (6) 0, 160D 65) 0, le)p Lt ), Pty > : T TS = 773 _(7;)

+ Lty 6>ty ) T LT 5 (LT, =7, 70 = 7T bl 3T+ T~ 47,
= LWl €t 16D Lyl Gwe [7) ) | Eon L LT =T =0 w6 T =/0(0)+ 7% 57F

, g (18}
+ <L‘)£/C‘)LJ¢((‘;)><W%(Q)W4 () 7 7 7). It will follow from (8), (19) and (20) that
. z ;
t L (O)wileg > ) v )5 75 74. 7 e (i [ “/a{t‘ - )
S nf c
on noting the Knonecker delta in (3). This equation then gives i
! W)
,ﬂ 7' ((‘ r’i(- f’) —YD/t"r -t/ z ' Let us calculate /r ) from (10) in a similar manner. - We employ th
7, + J
27,,> ozt e J gl T)) | :
l linking notation of FLM which means that, for example, we would write (18} as
! . . o — —
From (11) we may deduce that | . <12347 = £12347 + <'12L_3_"37+ <1234>.
v/ -fl-G CJ *[’/Mf‘ “)\7‘7‘ . ,
12> <3l(>-l-<)3><’/-1/> -+ (//,,){23) /"’) , t / c Vg S Tha linking indicates the members with Z{ < whose subscripts are made equal
: i . f before summing over the :Zﬁy . We now write
nAan
i £ 1234567 = 1234567 + <1234q0) + (1234563 + <|73455) + (12?4%6)
and therefore § — — —
k +<123458>+/123458>+4123458>+<12d”‘%0>* (|23"e 5% (.
. [E— - t':__JJ \“—’,
) R = =7 == r**”—ﬂ
{12343 - Q1294347 - <137<24> - 49423p +<123458 + < 123358 + <1234:a> + <123458 7 + 1233567 .
ya T) -—[5((‘-}-F / “ ;
18) : . .
/ :7 ;7 J7 :L%1€7 2%.7 jZ :7 :) /) ( The calculations ars simplified by noting that the five temms which have either
12 or 56 linked sum to
To express sums of products of ;Laﬁ in terms of 17 and 32 it will be £127€34567 + £12347456> ~ £1274347<56% . ¢

Tound helpful to use the following relations which are consequences of (13) and

(18] :



The surviving terms add up to

(,37) _F(Mr —bat =t r\/j ,ijj Jr]L]aZa ,\L. u f777+ 7;/,\ ,z)

. " ts ot ~-t)
jt( ) P66 (17.] j_£74,7y,+7,22,7n7/¢7n L th1777,7, (28
+ 21057 42,17277+7472.7,)

n

After repeated applications of (20) it is found that (24) is equal to
/f+f (‘ LT P o 213 z Tz 2\t 2 2
(! /) - d Lk/jfjg),f(f) 4377 7° 290 ) 47216 |

N A [Ty S S P s

7

so that <'123456> is the sum of the expressions (23) and (25).
We next calculate the sum of the - <++> <ssee> and = <ee=e> <oo> terms
in the integrand on the right hand side of (10). Df the fifteen such terms two

are cancelled by terms in (23). For the remaining thirteen we put

- <13)$2456) =

1

<13)¢2a¥(sey - L137(2436 - <13><£€§%>

- {14>¢2358) =

{147423%<567

147423567 - <147¢2356)

- <155(23487 = - <15523)467 - <15)<2346> - (15><2396>

- CABY2345> = ~ <189<23>445) - <15><§§%§> - (1652345
haman | |

- 123548 = - <12><3EI<A> - L1235><487 - L1235)4B>

- <1245)¢36 = - 12Y45>(36Y - <1245)C36) - (12457¢36) (26)

- <1345%(26> = - <13)<45)(26> - <1395><26> - {1345><26>
— —

- {12362445% = ~ {12>{36)<45> - {12387 <455 - <1%§8><A5)
1 —

- <1248YG35) = - {123 (46> <35> - <12467<35% - <12467¢35>

—

— —

- 13463 (25> = - <137<AB)(257 - {1348)(25) - £13467(25)
r~— 3

- C1258¢34) = - LA2){56)<34Y - {12563(34) - (1256)<34)
7

- <13565¢€24> = - <13C56><24> - <1356><24> - <1356><24>

- <14563<23% = - {14><567<23) - <1ﬁé§><23> - 414567235

have time dependence _g

)=

]
As far as the sums over the :7 /% in the terms on the right hand sicdes ars

7’ A .
cohcerned, <++> <~---> yields 4 Jj:7 and <++> <esee> yiglds

n {’

':Z£ ]p 7,ﬂ jg and the sum of these is )

g(jﬂ.zl)f_ 207+ 17777 - £G)" (27)

The sum of the contributions from the <+«> <-ess> and <s+++> <++> terms on the

right hand sides of (26) is from (11) and (27)

(m/){zé wﬁ/ﬁﬂ‘ 1‘;—’*#—2‘2-5)_}‘ 90 B R T ((_(pgx
{202:3;) =207+ 77737 5G).

Finally we collect the <++> <-+> <ve> gontributions. These arise from

such terms in (10), (23) and (2B8), and their sum is

£137¢255<46> + {137<26) (45> + {15)¢237¢46% + <167{237¢45>
4 241474255438)  + 2<142426>¢35) + 2{15¥<24>{ 36 (29)

+ 21524267434y + 2<1674242<{35> + 2¢1674255¢34> .

g 3
The sum over the j'{;/J for each term of this is 7%_17( jhi ,» that isﬁz"-j:) «

- Y ot N i S
The first four terms have time dependence ¢ F(r“kti GHt-6-Te
IR L R A )

and the rest

. Hence (29) is equal to

— ((‘+(‘ '1-(71, t--(\b) (AR ('—r,,,-(}»l‘h)
e

On summing we obtain from (103, (25), (28) and . (30) that

_ e
é"/)g{ LUTET)T, + aT2 067 foefetie” Blean-t6,t-¢,)
LQ/(j )j -f—,ZOj é{’j]jdr f,./(‘ /S(hf‘ﬂ; A j} (313



N

5. Correlation functions for spherical harmonics

We see from (7), (17}, (21) and (31) that

dL RG> (4T e .
4486 (4157 [
Jrﬁ )/2\7—5_] /c(f/(/(‘/dfﬁﬁ/?/mbv 6,0

/ o+ _
”QT) /L?(]’j )7*/*7 /é7}z(r //fe ~flo G~ - t)
+}_,2//7~7,27 +207 - éf]]/clr j’/f"€ [(’/qﬂxdrrd‘&“rb}

o T apig, o>,

This can be integrated immediately to give
(Rte,i> =eep{ = 2 7) i+ (2 ) 1272 62T
NCH TR (o2
T [2/(757;)7;20’735&’7;]]?/2—)% : ]}
on recalling that R(0,0) is the identity operator.  The time dependent termsA

on the right hand side are defined in equation (€2) and Appendix of FLM. Now

by definition

s

¢ on Vi * T
< 'D/‘n)h,’(- o//t)) f/f)‘ }//c))> = [ oo [ Sem /f/o)a'F/o)\Gm( /zw;,.m)<)?/tjo)>iaf, Protuimr).  (33)

In substituting for < R(%t,c)> from (32) we remark that, since J; commutes with

7.7 [cf. Brink and Satchler 1875 p. 263,
X7

-1 2
\( /M M).— Rito) 7, ,\C.M,/{m,m)rO,

because in the present mocdel the third Compohent of angular velocity vanishes.
“ 2
We may therefore replace every 32 by zero and svery :7 by J{3 + 1) timas the

unit matrix in 2j + 1 dimensions. Thus

(]

<W\) (oue) /f/_) )’/t}> S,M ez fJ(J+VL/](/1é)4(£7m_Z (¢l (,xé_]&}uc]/] }

where we have employed the orthonormality property of the \jS . On the other
hand ths stochastic averaging process denoted by <e<+> is independent of the

configuration space variables, and so we have from (33)

<pm)»-.'(0((é) {"/t*))f/62)> fdd/o)/gaf’m)d/’(o)<\( /F(ov 1)) ?7(1‘ D)Y (Ffo/ .fa))/

< [otawn [ oo (Y. tponam . (e e )
] - «
- [ etawn &2 proret prrd i (peran)Y ol pit,aror)
o 4 )

‘since <( i[)) /x/t/ /(() ?7#{;§s real. The last integral combines the
mml ) 7
stochastic averaging process with an averaging over the initial configuration,
©and may properly be called the correlation function of the spherical harmonics
\(}hﬂ and )5“ B This vanishes for m' * m, and for m' = m it is equal to ths
exponential in (34).
For applications to the‘theory of dielectric relaxation we put J = 1,
m=m' = 0 in (34) and using (5) obtain

/u

<Crs ple)>= -éﬂ,f{ 2 (f/

(* ) 7%e /"QT)A?] (¢) +#”Z /H] }
where /2/f7 is the angle between the orientation of the dipole axis at time t
and time zero. On expanding the last exponential and employing eg. [(A.5) of

FLﬂ we find that 2T lﬁT'xv lie) (ot
(C,;Igu-/‘>= | - 2,1-’“2 2/7“ + 4 (’:72) LZ: /t)+2; (uj
Ny VL&D w0 e8] 1048 T jirr 16T 67, .



We make & Laplace transform of this equation referring again to the Appendix of

FLM:
Lo Vg " .
_st | AT 41 [k
/‘,<C"5 F'“>‘€ dt = % 7 g‘(;"/rﬁ/ ( ) s p) ;‘*(;,«/;}’“fwzﬁ)]
3 + a y— )
e (35
(6_ L«(s+ 6) 53(5/.5)3(92/&’) g‘rg,,_ﬁ) Si-zﬁ)
/6
+ z 2z z ]+ *

Scs+ B) (£+z/;)(§4 2R

This may be cbmpared with the result deduced from a Fokker-Planck-Kramers equation

by Sack [1957 eq. [Z.ZEJ]V which is equivalent to // Zi‘J 2 /’ /iJ
et _ /g 247/ 22T/ 1)
/-.(w/<a,5/’/:—)>.e f:/ Wl "}'1 +[w// (’Lrwu/f’

S AT/ UT/WJ éz//zﬁj
Ty 14+w//5’ l<+,~//’

" .

On expanding the continued fraction as a series in powers of /g7_/6f/9 we find

agreement with the value of the left hand side deduced from (35) with §= L.
For the case of the sphere [cf. FLM eq. (63), (80), (81) and Appendix]

eq. (34) becomes

. " T (u
) AT ,@7’)
(:DM/‘,UHI/?/H) )f/&))>: '&6/9{ J()H)[ Z/rH (7_ N,
‘ LT ‘ e
+/;)ZZ/U+4]MJ
D7 \k
+(i& Zj'nv+dj}k7+{4ﬂﬂv+%f1fw
€
+ (‘/O {y+1) +?5>7g“’/]~)‘ }
This agrees with the result for the linear molecule as far as terms in the
/ﬁjf// .
exponent proportional to = Z/g . It would be of interest, though laborious,
to extend the calculations for the linear molecule to terms proportional to

. 4
G;é //€7/51> and so to see whether the j-dependence of the exponent in (34) will

continue to be simply j(j + 7.

I am greatly indebted to Professors G.

helpful criticism.
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