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Abstract

ulti-instantons are included in a calculation of
the ground-statz ecrergy of the anharmonic cscillator in large
orders of perturbation theory. Their inclusion verifies a

conjecture of Langer and results in a partitien function that !

reproducas thse Bendsr-Wu result.

Ceecember 1877, To be published in Physical Review D.

The general formalism recently developed by Lipatav1 for calculating
large order perturbation theory in quantum field theories has besn applied to

the Hamiltonian

2
by several authors. The object of interest is the large orcer behaviocur
of the coefficients in the perturbation expansion of 1ts ground-state energy

1 takes the form
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This rcaleculation is of considerable importance since it is the eonly nen-trivial

ok

oric so far whare the result may be dirsctly compered with a previously obt
N . PR )
result, in this case, that of Bender and Wu.
. S R . 2
In the calculation of Brézin, Le Guillou end Zinn-Justin, the possible
gontribution of multi-instantons to the lesding behaviour of E_1 is not discussed.
They can be neglected if the interchange of the large n limit with the zero

temperature limit in the derivation of their Eqg. (32} is permissibie. This

e

interchange of iim

ts is apparently valid but probably haord to prove.
validity, Eqg. (32) follows because the rulti-instantons have higher Euclidesn
action than the instanton given by their Egs. (13} - (14) and therefore do not
contribute to the dominant growth of the ccefficient of gn in the psrtition
function.

- : EINN 3., S )
ihe approach of Collins and Soper igs somewhat different then tha

authors in Ref. 2 as it is more closely connected with eerlier idezs of Dyson

jol

6 . o . ~
and Langer. +It is of interest here because the interchange of thc large n
limit with the zero temperature limit is avoided. However, their calculaticn
should be completed by including multi-instantons, which we will do here. When

this is done the result of Bender and Wu again follows.
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The sssentials of the calculetion of Collins and Soper c

. . 4
as follows: Fornx 1, E  is gziven by

n
Loe Ty )
B = P ImE(H) (4
o .

The imaginary part of Ei(’ﬁ‘) may be cbtained Trom

- |
EGw =+ ~line (7 Wz, (2)

with the peartition function Z given by the Feynman-Kac integral over periodic

paths of period ﬁ :
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tion factor N is chosen so that Z(d} = 1. It is assumed that the

The norm
. s JER . . . LY S ores

continusticn of 7 to negative coupling by replscing g by A€ and lettingz

10 - can be performed, presumebly by & suitable modification of the space of

RErLSCIC |

ztns on which the intesgral for Z is defined. Since the object of

ol

~
ie £ for lerge n, it is evident from (1) that an estimate of £ (=)
for small A will suffice. An estimate of Z in this case can be cbtained

by summing over the leading saddle points in x, which are given by
. 3
X=X +AXT=0. (3)

After x(t) = 0, the next lowest contribution to the Euclidean action
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where 7 is an arbitrary time origin and the plus (minus) sign cenotes an

(anti-) instanton. The periodicity condition Xi._(ﬁ/z,) = Kz (=4/2)
is satisfied in the limit ﬁ - The inclusion of quacratic fluctuations

about - X 5 results in a contribution to Z given by

Ve +/3k
e

. 8)
"*ﬁ()ﬂr )
jiN . . .
where the factor 73% in the exponential is the value of 5{J<i] . Adding

to this the quadratic fluctuations about the saddle point at x(t) = 0 gives the

following estimate for Z for small N :

i o,
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2N = 1 =g () e N )

This is ®ne of the main results of the authors in ref. 3. . It is also precisaly

8

result of Langer. Wa now wish to shew that if multi-instentons ers included

L s p , ' g
in the calculation of Z the result (7) exponentiates, as conjecturad by Larger.

For purposes of illustration we consider two widely separated instantons.

The case of n such instantons follows as a trivial generelization. Four quasi

solutions of (3] are

.

V. 1y
Koy == = ('Zf) 2‘se:c,‘n((;-'t:‘) ;‘:(%:)lgse.ch(t-tz), .

with T, end T satisfying the conditions in (8} telow, but otherwise arbitrary.

These are quasi solutions in the sense that ths right-hand side of (3) is at most
-['c‘_
O(Q : t“l) for |+|g4/;,  provided
ITy=x > L,
1T, T K 8.

Given (B)'they also have the property that

e Sl =28[xy] + O(eF7 %)
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isclated instantons.

The zero-frequancy mode Vo of H in (15) can be projected out of the

Tluctuations ebout the two isclated instantons following the procedure of
- . . 3. .
Javicki and Collins and Soper. Then (14) becomes
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with the. limits of integration over instanton positions chosen to avoid double
H is the operator in (15) with T=0 . The result (6) was obtainad

counting.

by neglecting Aﬂ%rTMV in (418) 'so theat, in the same approximation, we infer

=15

rom (8] the value of the term 1n brackets on the right-hand side of (15):

The facter i occurs because Xy and  X- gzive equal contributions to the

result (8]. It is fairly obvicus that the calculation of the fluctuations

. . . 4
51) seddle points X, -, ¥_4 and X__ gbes through
)

7

—

about the remaining (qus

axactly &s sbove. Hence the total two-instanton contribution to Z, for small

XL is :
T Y, u 2 .
ol : - > BT .A.Ymn,_v =/
N..+J._.Jl.m.+lv.w Nl...r + Ze e _ M\_.m.l. A u(\m(u‘ m . :
all multi-instantons gives W
=y {8\ sy (17) W
2y =expl-ip Gr) € T

The exponentiation of the one-instantcn contribution to Z is expected in view

9 10

of the previous calculations of Callan, Dashen and Gross and Polyakov.

From (1), (2) and (17) we obtain

£ v 0™ (S (2) P,

which, when multiplied by 4" to correct for a different definition of g, is the
result of Bender and Wu. Only quadretic fluctuations about multi-instantons
end the saddla point at x(t) = 0 have bsen retained to arrive at (17). Non-
Geussian terms must be retained .to calculate the non-leading contributions to
£ for large n.

In conclusion, it is reassuring that two different calculations within
the general formalism of Lipatov yield identical results for the anharmonic

oscillator and that these are in complete agreement with the calculation of

Bander and Wu.
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