DIAS Access to
Institutional Repository

Title	Matrix Solution of a Diffusion Equation for Dielectric Relaxation
Creators	McConnell, J.
Date	1976
Citation	McConnell, J. (1976) Matrix Solution of a Diffusion Equation for Dielectric Relaxation. (Preprint)
URL	https://dair.dias.ie/id/eprint/966/ DOI
DIAS-TP-76-09	

Matrix Solution of a Diffusion Equation
 for Dielectric Relaxation

J. McConnell

School of Theoretical Physics, Dutlin Institute for Advanced Studies, Dublin 4, Ireland.

[^0]Sack [1] investigated the rotational Brownian motion of a sphere with moment of inertia I and dipole moment μ, which is subject to a frictional couple I β times the angular velocity and an electric field F in a fixed direction by writing down a diffusion equation for the probability density w in configuration-angular velocity space. He then put

$$
T\left[=\exp \left(k T \sum_{l} u_{l}^{2} / 2 T\right) \iiint_{l} w\left(\theta, v_{\theta}, v_{\phi}, v_{z}, t\right) \exp \left(-i \sum_{l} u_{l} v_{l}\right) d v_{\theta} d v_{\phi} d v_{z}\right.
$$

θ being the angle between the directions of the dipole axis and F, and deduced that

$$
\begin{align*}
& \frac{\partial \Psi}{\partial t}+i \frac{\partial^{2} \Psi}{\partial \theta \partial u_{\theta}}-\frac{i u_{\theta}}{I}\left[k T \frac{\partial \Psi}{\partial \theta}+\mu F \sin \theta \psi\right] \\
& +i\left[\cot \theta \frac{\partial}{\partial u_{\phi}}-\frac{\partial}{\partial u_{z}}-\frac{k T}{I}\left(\cot \theta u_{\phi}-u_{z}\right]\left(u_{\phi} \frac{\partial \Psi}{\partial u_{\theta}}-u_{\theta} \frac{\partial \Psi}{\partial u_{\psi}}\right)=-\beta \sum_{l} u_{l} \frac{\partial \Psi}{\partial u_{l}} .\right. \tag{1}
\end{align*}
$$

The subsequent calculations required for the study of relaxation effects in dielectrics may be considerably reduced by writing in the linear approximation for the steady state response to a field $F=F_{0} e^{i \omega t}$

$$
\begin{array}{r}
8 \pi^{2} T_{1}=1+e^{i \omega t}\left\{\cos \theta \sum_{r=0}^{\infty} A_{r}\left(k T \sum_{l} u_{l}^{2} / 2 I\right)^{r}+\sin \theta u_{\theta} \sum_{r=0}^{\infty} B_{r}\left(k T \sum_{l} u_{l}^{2} / 2 T\right)^{r}\right. \\
+\left(\cos \theta u_{z}^{2}+\sin \theta u_{z} u_{\phi}\right) \sum_{r=0}^{\infty}\left(c_{r}\left(k T \sum_{l} u_{l}^{2} / 2 T\right)^{r}+. \cdot\right\}^{r} \tag{2}
\end{array}
$$

and employing matrix methods for the solution of the equations for A_{r}, B_{r}, C_{r} that result from substituting (2) into (1). When A_{r} and C_{r} are eliminated, it is found that

$$
(L+\gamma M)\left(\begin{array}{l}
B_{0} \tag{3}\\
B_{1} \\
B_{2} \\
\vdots
\end{array}\right)=\frac{i \mu F_{0}}{\beta I}\left(\begin{array}{l}
1 \\
0 \\
0 \\
\vdots
\end{array}\right),
$$

and we have written

$$
\frac{k T}{I \beta^{2}}=\gamma, \frac{i \omega}{\beta}=(0), 1+\frac{i \omega}{\beta}=(1), 2+\frac{i \omega}{\beta}=(2), \text { et. }
$$

If $P^{*}(\omega) e^{i \omega t}$ is the polarization of the sphere due to the field $F_{0} e^{i \omega t}$ and P_{0} is the polarization due to the constant field F_{0}, it may be shown that

$$
\frac{p^{*}(\omega)}{P_{0}}=-\frac{2 D_{0} k T}{\mu F_{0}}=\frac{2 \beta \gamma}{i \omega}\left((L+\gamma M)^{-1}\right)_{00}
$$

by (3). On expanding the matrix as a series in powers of the dimensionless γ one gets
$\frac{P^{*}(\omega)}{P_{0}}=\frac{2 \beta \gamma}{i \omega}\left\{L_{00}^{-1}-\gamma\left(L^{-1} M L^{-1}\right)_{00}+\gamma^{2}\left(L^{-1} M L^{-1} M L^{-1}\right)_{00}-\gamma^{3}\left(L^{-1} M L^{-1} M L^{-1} M L^{-1}\right)_{00} \cdot \cdot\right\}_{0}(4)$

Since L^{-1} is a diagonal matrix, the evaluation of the terms in the bracket is not difficult; it is in fact very much easier than finding the expansion in powers of γ for the continued fraction of Sack. The following is the explicit expression for (4) as far as the γ^{5}-terms:

$$
\begin{aligned}
& \begin{array}{l}
P(\omega) \\
P_{0}
\end{array}=\frac{2 \gamma}{(0)(1)}-\frac{2 \gamma^{2}}{(0)(1)^{2}}\left\{\frac{2}{(0)}+\frac{3}{(2)}\right\}+\frac{2 \gamma^{3}}{(0)(1)^{2}}\left\{\frac{4}{(0)^{2}(1)}+\frac{12}{6)(1)(2)}+\frac{9}{(1)(2)^{2}}+\frac{10}{(2)^{2}(3)}\right\} \\
&-\frac{2 \gamma^{4}}{(0)(1)^{2}}\left\{\frac{8}{(0)^{3}(1)^{2}}+\frac{36}{(0)^{2}(1)^{2}(2)}+\frac{54}{(0)(1)^{2}(2)^{2}}+\frac{40}{(0)(1)(2)^{2}(3)}\right. \\
&\left.+\frac{27}{(1)^{2}(2)^{3}}+\frac{60}{(1)(2)^{3}(3)}+\frac{40}{(2)^{3}(3)^{2}}+\frac{50}{(2)^{2}(3)^{2}(4)}\right\} \\
&+\frac{2 \gamma^{5}}{(0)(1)^{2}}\left\{\frac{16}{(0)^{4}(1)^{3}}+\frac{96}{(0)^{3}(1)^{3}(2)}+\frac{2 / 6}{(0)^{2}(1)^{3}(2)^{2}}+\frac{120}{(0)^{2}(1)^{2}(2)^{2}(3)}\right. \\
&+\frac{2 / 6}{(0)(1)^{3}(2)^{3}}+\frac{360}{(0)(1)^{2}(2)^{3}(3)}+\frac{160}{(0)(1) / 2)^{3}(3)^{2}}+\frac{200}{(0)(1)(2)^{2}(3)^{2}(4)} \\
&+\frac{81}{(1)^{3}(2)^{4}}+\frac{270}{(1)^{2}(2)^{4}(3)}+\frac{340}{(1)(2)^{4}(3)^{2}}+\frac{300}{(1)(2)^{3}(3)^{2}(4)} \\
&\left.+\frac{160}{(2)^{4}(3)^{3}}+\frac{400}{(2)^{3}(3)^{3}(4)}+\frac{250}{(2)^{2}(3)^{3}(4)^{2}}+\frac{280}{\left.(2)^{2}(3)^{2}(4)^{2} / 5\right)}\right\}
\end{aligned}
$$

A recent calculation based on a Langevin equation [2] produced the above series as far as the terms of order γ^{4}.

A more extensive account of the above investigations will be submitted elsewhere for publication.

References

[1] R. A. Sack "Relaxation Processes and Inertial Effects II. Free Rotation in Space", Proc. Phys. Soc. B70, 414-426, 1957.
[2] G. W. Ford, J. T. Lewis and J. McConnell graphical Study of Rotational Brownian Motion", Dublin Institute for Advanced Studies preprint No. DIAS-TP-75-52.

[^0]: Sack's diffusion equation calculations of relaxation effects in dielectrics based on a spherical model are simplified. The steady state response to an alternating field can be easily expressed as a series in powers of a dimensionless parameter by inverting a matrix.

