DIAS Access to
Institutional Repository

Title	Reordering of Non-Lattice Permutations
Creators	McConnell, J.
Date	1975
Citation	McConnell, J. (1975) Reordering of Non-Lattice Permutations. (Preprint)
URL	https://dair.dias.ie/id/eprint/973/
DOI	DIAS-TP-75-17

By
J. R. MicConnell

Dublin Institute for Advanced Studies
Dublin 4, Ireland.

Reordering with respect to two symbols.

A crucial point in the proof given by Littlewood (Group Characters p. 94) of the Littlewood-Richardson rule for multiplying two schur functions is the setting-up of a one-to-one correspondence between a non-lattice permutation (nlp) of $\alpha^{\mu_{1}} \beta^{\mu_{2}} \gamma^{\mu_{3}} \ldots$ and a lattice permutation (lp) of some $\alpha^{\mu_{1}^{\prime}} \beta^{\mu_{2}^{\prime}} \gamma^{\mu_{3}^{\prime}}$ To quote Group Characters p. 95:

For a given non-lattice permutation of $\alpha^{\mu_{1}} \beta^{\mu_{2}} \gamma^{\mu_{3}} \ldots$, consider first the $\alpha ' s$ anc tre β 's only. Number the α 's and the β 's in the order of their appearance.

If B_{s} precedes α_{t+1} and succeeds α_{t}, it is said to be of index $s-t$, and is said to be of positive, zero, or negative index according as s-t is positive, zero or negative.

If the α 's and the β 's exhibit the lattice property, there is no β of positive index.

Dtherwise take the first β of greatest (positive) index and replace it by an α. This step is reversible, an essential part of the arzinent for the proof depends upon an exact 1:1 correspondence. To reverse the step we renumber the α 's and the β 's, and take the last β of greatest zero or positive index and replace the α immediately followigg it by a β, unless all the β^{\prime} s are of negative index, in which case we replace the first α in the permutation by a β.

We concentrate our attention on the last paragraph, since a reordering of a nlp to a lp is effected by repeated application of this process. The replacement of the first β of greatest index by an α and the renumbering of the α 's and the
β^{\prime} 's need no comment. To see how the rule for reversing the step arises we Jistinguish the cases where the renumbered sequence has a β with positive index. has no β with positive index but has a β with zero index, hos only β 's with negative index, or finally has no β at all. Let the β that is changad be β_{s}. Since it is the first β of greatest positive index, there cannot be an a between β_{s-1} and β_{s}. Moreover there must be at least one α between β_{s} end β_{s+1}, because otherwise β_{s+1} would be the first B of greatest index. If β_{s} lies between α_{t} and α_{t+1}, the sequence may be depicted as

$$
\begin{equation*}
\cdots \alpha_{t} \cdots \beta_{u} \cdots \beta_{s-1} \cdots \beta_{s} \cdots \alpha_{t+1} \cdots \alpha_{v} \cdots \beta_{s+1} \cdots, \tag{1}
\end{equation*}
$$

where there may be $\gamma^{\prime} s, \delta ' s$, etc. at the dots. We have $s-t>0, t \geqslant 0$, the cace of a symbol with zero subscript being interpreted as the absence of that symbol in the sequence. When β_{s} is replaced, (1) becomes

$$
\begin{equation*}
\cdots \alpha_{t} \cdots \beta_{u} \cdots \beta_{s-1} \cdots \alpha_{t+1} \cdots \alpha_{t+2} \cdots \alpha_{v+1} \cdots \beta_{s} \cdots \cdots \tag{2}
\end{equation*}
$$

Let us suppose that $t \neq 0$, so that the index of β_{s-1}, namely $s-t-1$, is positive or zero. In the sequence (2) the index of β_{s} is at least 2 less than the inden of β_{s} in (1) because of the replacemen: of the β_{s} in (1) by α_{t+1} and because there must be at least one α between β_{s} and β_{s+1} in (1). Hence in (2) the indfo of β_{s-1} is greater than the index of β_{s}. Since the sequence of α 's and β 's after β_{s+1} in (1) is the same as their sequence after β_{5} in (2) and since the indices of β_{s+1}, β_{s+2} etc. in (1) did not exceed that of β_{s}, namely $s-t$, the infex of β_{s-1} in (2) is greater than that of all succeeding $\beta^{\prime} \mathrm{s}$. Thus we return from (2) to (1) when $t \geqslant 1$ by taking the last β of greatest positive or zero index and replacing the first α following it by a. . That such an α exists follows from our construction of (2), but there may be γ, δ etc. between it and the β.

When $t=0$, the sequences (1) and (2) become, respectively,

$$
\begin{equation*}
\cdots \beta_{1} \ldots \beta_{s-1} \ldots \beta_{s} \ldots \alpha_{1} \ldots \alpha_{v} \cdots \beta_{s+1} \cdots \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\cdots \beta_{1} \ldots \beta_{s-1} \cdots \alpha_{1} \cdots \alpha_{2} \cdots \alpha_{v+1} \cdots \beta_{s} \ldots \tag{4}
\end{equation*}
$$

We distinguish the cases of $s>1$ and $s=1$. In the former case $\vdots \beta_{s-1}$ is the last β in (4) with greatest positive index, as we argued earlier for $t \geqslant 1$. We may therefore employ the rule as stated for $t \neq 0$ to return from (4) to (3). Whan $s=1$, the sequences (3) and (4) become

$$
\begin{align*}
& \cdots \beta_{1} \cdots \alpha_{1} \ldots \alpha_{v} \cdots \beta_{2} \cdots \tag{5}\\
& \cdots \alpha_{1} \cdots \alpha_{2} \cdots \alpha_{v+1} \cdots \beta_{1} \cdots \tag{6}
\end{align*}
$$

respectively. The index of each β_{i} in (5) cannot exceed that of β_{1}, so it is less than or equal to +1 . The index of each β_{i} in (6), being 2 less than the index of β_{1} in (5), is therefore negative. Moreover, since we have dealt with all the other possible cases, the index of every β in (2) is negative only when $t=0$. $s=1$. To return from (6) to (5) we replace the first α in (6) by a β, as wro stated by Littlewood. When β_{1} is the only β in (5), then (6) has no β. so in this case the rule is just to replace the first α in (6) by a β. We have thus considered all possible cases of the renumbered sequence.

This completes the proof of the rule for reversing by one step in a welldefined manner the process of constructing a $1 p$ monomial function of α and β from a nip one. It may be noted that there exist permutations which cannot be reversed, for example .

$$
\begin{array}{lllllllll}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \beta_{1} & \beta_{2} & \beta_{3} & \alpha_{4} & \beta_{4} \tag{7}
\end{array}
$$

This may be seen directly by attempting to replace each α of (7) in turn by a β and examining whether this β would be changed back to an α by the reordering rule. It may also be seen by observing that the last β of greatest positive or zero index in (7). namely β_{4}, has no α following it: We should note that we are not entitled to go back to β_{3}, whose index is the same as that of β_{4}, and replace α_{4}

Having dealt with the first step in going from a nlp to a lp we rapeat the process until the sequence has no β with positive index. The reverse process being well defined at every stage, we-return from $1 p$ to the nlp in a unique way Hence there is a one-to-one correspondence between a nlp of $\alpha^{\mu_{1}} \beta^{\mu_{2}}$ and a lp of $a_{1}^{1} \beta^{\mu_{2}^{\prime}}$ $\alpha \quad \beta$, where obviously

$$
\begin{aligned}
& \mu_{1}^{\prime}+\mu_{2}^{\prime}-\mu_{1}+\mu_{2} \\
& \mu_{1}^{\prime} \geqslant \mu_{1}+1 \cdot \mu_{1}^{\prime} \geqslant \mu_{2} .
\end{aligned}
$$

2. Reordering with respect to three or more symbols

To quote again from Group Characters p. 95:
Next the $\beta^{\prime} s$ and γ 's only are considered, and each γ is given an index relative to the β 's. If necessary the first γ of greatest positive index is converted into a β.... .

This step may destroy the lattice property of the $\alpha^{\prime} s$ and $\beta^{\prime} s$. If so, the first β of index +1 , which may or may not be the symbol converted from a γ to a β, is converted into an α, \ldots.

This process is continued consecutively with the $\gamma^{\prime} s$, δ 's etc., until we arrive at a lattice permutation of $\alpha^{\mu_{1}^{\prime}} \beta^{\mu_{2}} \gamma^{\mu_{3}^{\prime}}$ \qquad
Let us confine our attention for the moment to continued products of α, β, γ only. The central problem is to understand how the one-to-one correspondence may be preserved, when the above rules are applied both to α, β and to β, γ. we should first remark that, if all the β 's have been replaced by $\alpha^{\prime} s$, the reordering is nevertheless performed with respect to the $\beta^{\prime} s$ and γ 's and that this amounts to replacing each γ by a β with the same suffix, unless μ_{3} exceeds $\mu_{1}+\mu_{2}$. For the purpose of establishing the Littlewood-Richardson rule it would suffice to take $\mu_{1} \geqslant \mu_{2} \geqslant \mu_{3} \geqslant \cdots$ and then $\mu_{3}<\mu_{1}+\mu_{2}$ anyway.

An an example of a nlp we have
and the partition $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ is $(4,3,3)$. The sequence is already ordered with respect to α and β, and reordering with respect to β and γ changes (8) to

$$
\begin{equation*}
\alpha_{1} \beta_{1} \beta_{2} \alpha_{2} \gamma_{1} \alpha_{3} \beta_{3} \gamma_{2} \beta_{4} \alpha_{4} . \tag{9}
\end{equation*}
$$

This has now to be recorded to respect to α and β :

$$
\begin{array}{llllllllll}
\alpha_{1} & \beta_{1} & \alpha_{2} & \alpha_{3} & \gamma_{1} & \alpha_{4} & \beta_{2} & \gamma_{2} & \beta_{3} & \alpha_{5}, \tag{iv}
\end{array}
$$

which is a lattice permutation and corresponds to the partition (5, 3, 2).
While there is a well-defined procedure for going forward from (8) to (10), the reverse process is not well-defined; in other words starting from (10) we have no a priori way of knowing whether we reverse first with respect to β and γ or with respect to a and β. If we reverse first with respect to β and γ and then with respect to α and β, we obtain

$$
\begin{array}{lllllllllll}
\alpha_{1} & \beta_{1} & \beta_{2} & \alpha_{2} & \gamma_{1} & \alpha_{3} & \beta_{3} & \gamma_{2} & \gamma_{3} & \alpha_{4},
\end{array}
$$

which differs from (8) though it still corresponds to the (4, 3, 3) partition. On the other hand, if we apply the rules to bring (11) to a lattice permutation, we obtain (10). Hence the two nlp's (8) and (11) corresponding to the same partition are reordered to the same $(5,3,2) \mathrm{lp}$.

We can therefore speak of a one-to-one-correspondence between (8) and (10), if and only if we prescribe the order in which the reverse steps are taken. In the general case of monomials in the symbols $\alpha, \beta, \gamma, \delta$, etc. we carry out the same type of procedure for bringing a nip to a $1 p$. By reversing the order of the substitutions of pairsof consecutive symbals we can establish a one-to-one correspondence between the nlp and the $1 p$.

