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A HQLLOV WATER-BAG
J. L. Synge !
Dublin Institute for Advanced ©tudies

Abstract: Bouyier and Janin have described stationary water-bag models
of'globularkolusfers, the defining condition heing cssen&ially that

the total cneréy of a particle (pcr unit mass) is pounded above. In %hc
present paper thig demand is supplemented by the condition that the angular
momentun of a particle (per unit mass) is bounded below, The resulting
model is a hoéﬁow sé%herical shell for Whicﬁ the density vanishcs'r;'

on voth inner and outer surfaces, but the particle-velocity vanishes on

P

neither.
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1. lntroduction.
This paper 1is concerned #ith stationary water—bag modelstof

\
globular clusters. 'he distribution function f is a function of three

variables (r, V, w), where r is distance fron the centre, v the magnitude of

the velocity, and w the cosine of the angle between the vectors of position

and velocity, so that the rangcs are

r>0, v» 0 -1 dwd 1. (1.1)

In this reduced phase-space of three dimensions the element of volume is

8n2 r2 v2 dr dv dw. Let us normalise f so that the mass inside a sphere

cof radlus T, with centre at the origin, is

w(r) = an.f fyﬂf(§ G,V oy W) § ve dr dv aw. (1.2)
The density is then S
Pl = (4neD)7F anfar = 2n ff £z, vy W) v av aw.  (1.3)

Tt is convenient to define the érav1tatlona1 potential as

PN IS PE 2t SR Ca

 wvanishing at T =0 and increasing steadily with r. 1t satisfi=s Poisson's

The total energy of a star and its angular momentum (both per
unit mass) are respectively ’ | ‘ |
go yPad, Tema-wn o (L6
both of these are conserved as the star moves.‘

a constant, in some

-y .

In a stationary water-bag model we put ='q

fixed domain D of the reduccd phase—space, with f

D must be bounded by a 2—spacc with equation of the form P(H, J) = 0.

28 (r ad/dr) = 4nGp S ; - (1'5).”

O out51de D. The domaln




< P

e it im0

At

e b i o e s s S

So, by (2-3)9

2. The holldﬂ model.
let D be defined by
H{H, J > Ty | (2.1)
where Ho and\Jo are positive constants. If we represent the coordinates
(r, v w) as rectangular Cartesians, the surface H= H is a cylinder

with generators parallel to the w—axis. Uhtll we know the potentlal ¢,

" we can make only a qualitative sketch of this cylinder; jts trace on the

plane w = O is a falling curve, as indicated in Fig. 1. On the other.

Fig. 1
hand, the surface J =J g is well-defined; its trace on w = O is the

hyperbola v = Jo.

The equations of the two traces are

= Z(HO - %) v = Jo/ry (2.2)
and so at any intersection r must satisf}
g% Ji/rz = 0. | (2.3)
It is clear that, if J is small enough, a first intersection must
exist, at r = rP, say. It is by no means obvious that a second intersection
(r = rQ, as shown in Fig. 1) exists.’Let us proéeed without asg/umlng its.
existence.

Theddomain r £ Tp 18 empty, and so, by (1.4), § =0 at T = Tpe

; S B “
Ho - J2/r = 0, = (eH )irP . (8.4)

e may then regard H and Tp as basic constants, with Jo given as above.

‘Ve see a spherical shell with inner radius rP, but with closure at rQ

.

gtill unestablished. This does not invalidate the argunent, because
we shall proceed with r ihcreasing from‘rp.
let us write the closure’equation'(Z.B) in the equivalent form
g =0 (2.5)

where

y () =1~ ¢/H - P/'r—» 3 (2.6)
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By (1.3) the density is - A
() = 2 ” v© av dw, : (2.7
where the limits for w are + {1 - J )]% and those for v are
J /r and [2(H - ¢)]2 Hence
) = a7 4 DT A= /3)23/2 (2.8)
e are to substitute this in Poisson's equatlon (1.5), changing the variables
from ({4, r) to (" ,uZ» ) where 7, 1is as in (2.6) and

‘ Z = Cr, 62 - 47;AGA7 Hif : . (2.9)

‘This gives the differential equation

‘§’2 dz( ¥2ax/at ) + 232 42 E%/{*:vo, (2.10)
where §13= CrP The range is i ff with the 1n1t1a1 conditions
A =0, 4% /a¥ = 2/2 p for z: p* (2.11) .

At this point we may compare formulae with those of Bouvier ané
Janin'(1970) In thei; water—bag model thc domain D is bounded by
H = Ho and J = O, and so we might expect the present formulae to agree
wi£h fheirs if we simply put J = 0, or equivalently rP = 0. Then indeed’
the differentlal equation (2. 10) rdduces to the Emden equatlon, as in their
work, but the initial conditions (2.11) are qulte different. The exp}anatlon is
as follows, No matter th small we make Jo’ but still positive, the present
model has a hole at the centre, #hereas the Bouvier—Janin model has no hole,
‘A closer investigation for small values of Tp shows that, although the .
céntral hole persists, the densijy near it builds up qﬁickly to the
Bouvier—Janin dcnsity, so that thc small hole at the centre produces

only a 1ocal effect, Thus there is no dmsagreement between the two models

in the 11m1t1ng case of a small central hole,
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3, The theoxrem of closure.

It 1ema1ns to show' that the modfl closes at o Equlva.lcntly, that
X as defined by (2. 10) and (2. 11), has a second zero. Gl

Let us write EP = a for notational 51np1101ty. le note *t;hat a
occurs both in the equation and in the initial conditions. To remove it
from the 1atf;er(51 and at the same time make the total po.ssible range of

independent variable finite, define z = a/ E . Then the equation becomes

: dz,% /dz2 + (32/24)')6 32, % =0 (3.1)

. for the range z < 1 with initial conditions

4 =0, d y /dz = -2 for z = 1. | ‘ (3.2)

It is clear from (3.1) that the graph of 7 (z) has no inflection and is

" concave domnward. ¥ith a prime to indicate d/dz, integration gives

’)C' P _(: t"4(%(t)]3/2dt. B AR | (3.3)

From the conditions at z = 1, there exist positive numbers (zl, € ) smxk

P

with z, £ 1 such that X(‘zl) =€ . Now suppése that /y/ has no maximum:

in other words
x’(o for 0v<<z<1. ‘ (3.4)

Then m)é for 0 £ z (;.. Therefore by (3.3)
X5 -2z 4[] H[f)(,(tm at
>- 22'+a 3/2 f t“4dt

5%‘3« € 3/2(7:"3 - 213) - 22, 7 (3.5)

This takes positive values in the range 0 < z ¢ 1. Therefore (3.4) is false. .

Thus there exists z_ (0 ¢ ZO< '1) such that

Now integrate (3.1) back from z =z 2

I CEEN S A PAORARY (3.7)
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| > o 4, Ry
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Compare this function with the function z ﬂ:o /zo, which represents the’ s

straight line drawm in the (z,%,) plane from the opigin to the point (Zo’%o )

Assume that the solution x satisfies

i Y22 %u/zo soraz € Z . (3.9)
Then by (3.8) " : T .
‘ /2 T ‘ 3/2 l
% <Ko 20, f2) e L 4 - 2T ey, (3.10)
or , ‘ ,
x <, 3,2 o bl (a/2) " [2 * (2/2)°]] (3-13)
o o - : /

For z small enough, but finite, this expression becomes negative.' Therefore
o L :

y
(3.9) is false. The graph of the solution ﬂ’/ cuts the straight line z e /zo,
[}

. and, since this graph as concave dowrward, there exists a value of z (0 z< 1)

- such that /’t = 0,

This ebstablishcs the closure of the model for z = ZQ’ say, and
- / : = / . r s 2
hence 'for EQ ‘}_P’ Zg and hence for q Tp/ 2g The finiteness of

%/ there follows from (3.3), and hence the finiteness of dff/dr at r = Toe '
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