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Abstract: Bouvier and Llanin have described stationary waterbag models

of globular clusters, the definiLg condition being essentially that

the total energy of a particle (per unit mass) is bounded above. In the

present paper thi demand is supplemented by the condition that the angular

momentum of a particle (per unit mass) is bounded below. The resulting

model is a hoo spherical shell for which the density vanishes

on both inner and outer surfaces, but the particle—velocity vanishes on

neither.
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1. Introduction.

This paper is concerned with stationax water—bag models of

globular clusters. ‘ihe distribution function f is a function of three

variables r, v, w), where r is distance fro.n the centre, v the magnitude of

the velocity, and w the cosine of the angle between the vectors of positthnn

and velocitr, so that the ranges are

r) 0, v Q, —l (w < 1.

In this reduced phase—space of three dimensions the element of

8it2 r2 V2 dr dv dw. Let us normalise f so that the mass inside

of radius r, with centre at the origin, is

= 8t2J Iff( ,v , w)
2

V2 dr dv dw.

The density is then

pr) = (4r2)d’dr = 2it J/f(r, v, w) v2 dv dw. (1.3)

It is convenient to define the gravitational potential as

(r) = G J i(
-2 d 1.S4)

vanishing at r = 0 and increasing steadily with r. it satisfies Poisson’s

equation
S

r2 [(r2 dd’/dr) = 47tGp .

(1.5)

The total enerr of a star and its angular momentum (both per

unit mass) are respectively

H= -v2+Ø, J=1vç1_w2)+;
S

(16)

both of these are conserved as the star moves. S

In a stationary water—bag model we put f = 1) ‘ a constant, in sone

fixed domain D of the reduced phase—space, with f = 0 outside D. The domain

D must be bounded by a 2—space with equation of the form F(H,J) = 0.

(1.1)

volume is

a sphere

(1.2)
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2. The hollov mie1.

let I) be defined by

H H0, J ) J0,
(2.1)

where H and J0 are positive constants. If we represent the coordinates

(r, v w) as rectangular Cartesians, the surface H = H is a cylinder

with generators parallel to the w—axis. Until we 1’iow the potential 0,

we can make only a qualitative sketch of this cylinder; its trace on the

plane w = 0 is a falling curve, as indicated in Fig. 1. On the other.

Fig.l

hand, the surface 3 J is well—defined; its trac on w 0 is the

0

hyperbola rv =

The equations of the two traces are

V2 = 2(H
— 0), v = JJr,

(2.2),

and so at any intersection r must satisfy

=0.
(2.3)’

it is clear that, if J0 s small enough, a first intersection must

exist, at r = r, say. It is by no means obvious that a second intersection

(r = rQ as shown in Fig. 1) exists. Let us proceed without assuming its.

existence.

Theddomain r< r is empty, and so, by (1.4), 0 = 0 at r = r.

So, by (2.3),

H0 — + J/r = 0, Jo = (2H0)’r • (•4)

‘Ve may then regard U and r as basic constants, with
j0

given as above.

We see a spherical shell with inner radius r, but with closure at rQ

still unestablished. This does not invalidate the argument, because

we shall proceed with r increasing frornr.

let us write the closure equation (2,3) in the equivalent foxTn

%(r) =0, ‘

(2.5)

where
X (r) = 1— ‘H0 —r2p/r.

(2.6)
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By (1.3) the density is

rr 2
(r) 2t1JJ v dv dw, (2.7)

where the limits for w are ± [1 — J/(r2v2)i2 and those for v are

J/r and [2(11
— Ø)]. Hence

f (r) = A H2[ (r)
]3/2,

A = (4/3)23/2. (2.8)

‘Ic are to substitute this in Poisson’s equation (1.5), changing the variables

from (0, r) to ( X ,t ) where is as in (2.6) and

= Cr, =
(2.9)

This gives the differential equation

—2L 2
dX/d )

+ 3/2
+ 2 = 0, (2.10)

where = Cry. The range is with he initial conditions

= 0, d % /d = 2/ for = (2.11)

At this point we may compare foxTnulac with those of Bouvier and

Janin (1970). In their water-bag model the domain B is bounded by

H = H0 and J 0, and so we might expect the present foru1ae to agree

with theirs if we simply put Jo 0, or equivalently r = 0. Then indeed

the differential equation (2.10) rdices to the Emden equation, as in their

work, but the initial conditions (2.11) are quite different. The exp’anation is

as follows. No mattel’ how small we make J, but still positive, the present

model has a hole at the centre, whereas the Bouvier—Janin model has no hole.

A closer investigation for small values of r shows that, although the

central hole persists, the deniy near it builds up quickly to the

Bouvier-Janin density, so that the small hole at the centre produces

only a local effect. Thus there is no disagreement between the two models

in the limiting case of a small central hole.



.1

-5-

3. The theorem of closure.

It remains to show that the model closes at r0. Equivalently, that

as defined by (2.10) and (2.11), has a second zero.

Let us write = a for notational sinp1icity. lie note that a

occurs both in the equation and in the initial conditions. TD remove it

from the latter and at the same time make the total possible range of

independent variable finite, define z = a/ . Then the equation becomes

d6 /dz2 + (a2/z4) 3/2
+ 2 0 (3.1?

for the xnge z 1 Nith initial conditions

‘=O, d/dz=—2forzl. (3.2)

It is clear from (3.1) that the graph of (z) has no inflection and is

concave downward. lIith a prime to indicate d/dz, integration gives

= - 2z + a2f t_4[%(t)13/2dt. (3.3)

From the conditions at z = 1, there exist positive numbers (z1, e ) K

with z1 1 such that a(zi) = e • Now suppose that has no maximum:

in other words
for 0 z 1. (3.4)

Then for 0 < z <z1. Therefore by (3.3)

V

— 2z + a2 f’t4[ (t)11 dt

>— 2z
2 3/2 f V

= a
3/2(_3

- zE3) - 2z. (3.5)

This takes positive values in the range 0 < z <1. Therefore (3.4) is false.

Thus there exists z (o z< 1) such that

V =°‘ Z>°• (3.6)

Now integrate (3.1) back from z = z: V

V

= — 2(z — z0) + a2 ft-4[ x (t)]’ dt, (3.7)

•1
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and

=
— (z - - a2 f t4(t - (t)i’1 dt. (3’.8)

Compare this function with the function z
,

/z0, which represents the

straight line driwn in the (z,Z) plane from the øDigin to the point (z,%

Assume that the solution satisfies

>. z for 0 z z. (3.9)

Then by (3.8)

Z a( /z) (t - )t3/? , ç3.o)

2 2(/)3/2
(3.11)

For z small enough, but finite, this expression becomes negative. Therefore

(3.9) is false. The graph of the solution cuts the straight line z

and, since this graph ths concave downward, there exists a value of z (O<’z 1)

such that = 0.

This establishes the closure of the model for z = ZQ say, arid

hence for = and hence for rQ =r1,/z0. The finiteness of

there follows from (3.3), and hence the finiteness of d/dr at r = r0.

Acknori1edçments.

I thank my daughter, Professor C. S. Morawetz, for valuable help,

particularly in connection with the existence theorem; a referee who rejected

an earlier version of this paper and supplied a fix± useful reference;

and Professor Bouvier for friendly corresjondence.

REFERENCE

1970 P. Bouvier and C. Janin, Astron. and’Astrophys. 5, 127—134.



11


