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Abstract

Two different possibilities of constructing superfields of arbitrary
spin content are considered. In one the superfield itself transforms
. according tom some representation of the homogeneous Lorentz group

(H.L.G.) while in the other it is a scalar but is a function of several

four component Majorana spinors.



1. Introduction

(1,2,3) is that it is a supermulti-

An important aspect of a superfield
plet field, describing particles of several different spins. Our aim in this
paper is to devise means of constructing superfields that contain particles

of arbitrarily high spins.

(1) (2,3

The superfields defined by Wess and Zumino and by Salam and Strathdee
are themselves Lorentz scalar fields defined over spacetime and the Majorana
spinors o which belong to the {(%;O) C)(O,%—] representation of the homogeneous

Lorentz group (H.L.G.). Denoting these by

P

3.;"‘ {g&Q 7(‘] ; g:a,ﬁ; "u':i (1)

the Msjorana restriction is expressed by

el

ér—&;‘i ) Y‘:E,g (2)

where ¢ is the two—component antisymmetric symbol, or the metric spinor, and

n simply denotes the complex conjugate of n. In addition these Majorana spinors

are teken to be anticommuting

{GKJBFS'-'O (3)

so that no greater number than four factors of § can be non-vanishing (or two
factors of either £ or 7).

The scalar superfield thus defined can be expanded in powers of 8

<I>(x,e)= Ab)+ BY(x) + 5©0) Fto 4 (69) & X 1x) + gi@e)"p(x)
+ 1 (B%0) &)

+ 4 (Bi%%0) A (1)



in the notation ofref.(3), wvhere A, F and D are scalar fields, G is a pseudo-
scalar field,.Ar an axial vector field and ¥ and X are spin~% Dirac fields.
Throughout the following, we shall enforce conditions (2) and (3) so that

(2,3)

the spacetime translation induced by the supersymmetry transformation

should be real (2’3).
Below, we introduce two types of superfields which can contain fields of

arbitrarily high spins.

The first of these is the non-scalar, covariant superfield

(A,B)@(~.,8,)®...
0 we). (5)

transforming according to the (in general reducible) representation
<A1’B1>@§(A2’B2)@§'f' of the H.L.G. This type of superfield was suggested by
Salesm and Strathdee <3).

The second type of superfield is a Lorentz scalar, defined over spacetime

e(1)’e(2)’ i ’e(n)

e w

and several anticommuting four-component Majoransa spinors

@ (X) em) e(z))m) e(n)) i ' (6)

As seen from the single 6 scalar superfield in (4), the spin content of the
component fields arises from the magnitude of the "spin" representations of the
H:L:G carried byt the Majorana bases. Thus in (4) the highest spin field is the
axial vector A corresponding to the basis giquSG. It follows then that for
a superfield of the type (5), transforming according to an irreducible represen-—
tation (I*R+), (A,B), of the H+L:G , the highest spin content will be that of
(A}B) itself 4) plus one, i.e. (A+B+1), while the lowest spin will be spin-0

~or spin-(|A-B|-1), whichever is the greater.
This means that with a judicious choice of (A,B), the superfield of spins

up to (A+B+1) will be a tower of particles starting from spin-0. On the other



5,6)

hand, if A-B is not sufficiently small, for example for a Joos-Weinberg
(J-W) representation where A=j, B=0 with j > 1, the peculiar situation will
oceur where the lowest spin will not be zero and the supermultiplet will occu-
py a spin band. This situation however need not arise, and by §imp1y construct-
ing superfields of reducible representations (5) the spin towers can be made

to start from spin-0.

Another way of ensuring that the tower of spins starts from zero is to
construct superfields of the type indicated by (5). This last type has the ad-
vantage that the superfield itself is a Lorentz scalar, but the disadvantage
that the Majorana bases are much more copious owing to the loss of the restric-
tions arising from the use of identical Majorana spinors.

In the two following sections both approaches are presented respectively.



2. Covariant Superfields

2.1 The Covariance
According to the form (5), a covariant superfield labelled by the I.R.
(A,B) of H'L*G transforms, under weak transformation A and supersymmetry

"rotation" &, according to

UIR) &% eyutmy = DM 0 Dy 3, BY8) (1)
{A,B) o @"'5) T
UE) & tx,0)U'te) = (x+ & E%.6, b+e) | (8)
6)

where we ﬁave used the notation of ref.
.Y ko)
D(A)S D CA) O » ’yrﬁ o véc;‘ 3 O‘a i'a'. » a}.‘t'ogo

- (9)
o iE o g

9

It is a stralghtforward matter to decompose the superfield specified by
v (7) and (8), in the manner of (4) by using all the available independent
Majorana bases, whose coefficients then will be the fields of different spins.

These bases are presented in the next subsection.

2.2 The Majorana Bases

2,3)

Here we construct the definite parity bases from the spinor 6,

subject to the conditions (2) and (3). The following basic spinor identities

“are used in the reduction of these bases.

E0uE =-FT (10)

Ew by = By By + B Ep (11)



R0 = G t EL b, 070° (12a)

. aay

For example, using (2), (3) and (10) one finds that

end using the notation (6)

- 1

Veqf., p=jo 41, T=it O |
1 0 o -4 (13)

this means that ..m......«rm vanishes identically while m?r«% = mmq.td is non-
vanishing.
We list now the bases constructed from 6, both in four—component § spinors

and in two-componenet spinors £ and n:

. W.Su P :wm.v

4 = - T &) - . = g - ()] bt - s - e
B,=0<[7.8).B= 0ilhe 65, 70], By= 92« (70085, § Guoy]  (100)
=0) A . .

iz @.Qn ; 4rl2,3
B 80 (750 ), BLa 00 (6-Eq) , B Bifko = 270y (the)
nwu o) ) e A ’

w.w = B ® wa. o= 12,3 (14a)

ﬁu wM.@ WQ. &.s%.“—sp~w.. Agr.mv
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2.3 Two Exsmples

To illustrate the construction and decomposition of the covariant super-
fields given in 2.1 by means of the bases in 2.2, we comsider two simple
examples, one a Lorentz—vector.superfield with A=B=%, and the other a Dirac-
spinor superfield that transforms according to the (%30) + (O,%J representé~
tion of the H'L°G.

Vector Superfield: Using the bases (14) we decompose ql(x;a) as follows:

Vilwo)=Vy + 844, @0V +Ge) B+ (B) Y
s@oyy g +B%0) A +6B) (Bin) ¢e
t (5£YrY;9) P
OBV, Y, 6) Hyw (16) -

Here P is a pseudoscalar field, A an axial vector field containing a (spin)B2EE"
Ez-1+ and & 0_particle, Vél)

- + v . . . .
1 and a O particle, W 1s a tensor field whose symmetric part includes a
{2)

(i=1,2,3) are vector fields each containing a

2 and a 0 particle and its antisymmetric part a 1" particle. q#n and’

-3
e

2

(R-8) fields, each containing a spin-3/2 and & spin- %-particle.

(] .
are spin- 1-Dirac fields while Q% and q;s are unrestricted Rarita-Schwinger

As explained in Section 1, the maximum spin here is spin-(A+B+1)=2, while
the minimum is spin-0.
In carrying out the decomposition (16) we have used the fact that the in-

CF) in the Majorana bases serve to project

variant tensors and the y-matrices
out the higher spin content of certain fields, for example the following terms

containing the R-8 field y" and a third-rank tensor field Tuvx,

GRY Y= By wwsd (80, TF. (BO)* VP
\

effectively contain the Dirac ¥ and vector VA fields respectively, an% are then

simply absorbed into the corresponding field with the same Majoransa basds.

(%) -
which play the role of Clebsch-Gordan coefficients here.,




Just for ordinary local fields, if the vector superfield V (x,8) is
u

subjected to the Lorentz condition

% Vp(x,0) =0 (17)

its spin content diminishes appreciatly. In fact, imposing (17) on (16) gives

rise to the restrictions

9?‘1’(;3 + ‘f‘ o
Qr4¢4+-xﬁna )
‘3,.\1(;’ 20 4:z5,2,3
A =0

WP+ BHy0 . (18)

2

is reduced by two, the number of scalars by three, the pseudoscalars by one,

It follows from the restrictions (18) that the number of spin- l-particles

and the number of vectors by one.

Dirac Superfield: Using the basis (14) we decompose the [(%30) CJ(Oa%O}

superfieid

b
T o) =] & we) @ Xx0] | weat o=t
in the following way:

Vleo)= ¢+ 6,8 + @y +@0)6."  + @or -
+ (¥6), B +(§Y; ) \ﬁ) + Y 8) 6, p

RO Y 4B %)y, +(B8)(i%0), V)

+(iY,0), A) + (B9, 0)(i%,.6) A7
r AU
(4 Y,6),F) +(86) (%, Y,6), F
POkl G  +E%E)(ge) 6

(19}



As expected the highest spin ogcuring in this supermultiplet is the
spin-3/2 content of the R-5 field wz, while the lowest is spin-0. The
nomenclature used in (19) is the same as that used in (18). Thus the boson
content is, two scalars, two pseudoscalars, two vectors, two axial vectors,
and four pure-spin-1 fields (two of either parity signature). The fermion con-
tent is more subtle and needs comment. Apart from the four spin~%'Dirac fields
exhibited, the unrestricted R-S field contains a spin- %—Dirac field in addi-
tion.

Now it might appear that in the exapansion (19), the terms

(8% )6 owd (BY) ¥%sb (20)

%)

are omitted /. It turns out that these terms are not independent of each other,

and from (11) it follows that

By) %6 + (B%Y) O = ;g-('e'yge)zp - L (86) %y (21)

- o . \ * *
which would simply be obsorbed into the appropriate terms in (19), while )

(By) %0 - B%Y) 6 = 2(Bi%Y%sb) b4 (22)

1y o1 : . :
where %(5) is the spin- > part of the unrestricted R-S field given by

Y = G ), | (23)

which is already acciggnea for by W in (19).

*

! R o — ‘] — [a}
Other terms like (68)(gyle = - 1(60)7y are already accounted for.

*% : . de o s S
)Using the wellknown spinor identitiles (7:5 ?’f: 2 S‘. 5“ ’ Cf“.ﬂ;,)d 22§,y ¢
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The Dirac superfield (19) has the same H+L'G transformation properties
as the ordinary Dirac field, as well as the property that under parity its

two-component spinor parts will undergo the transformations

5?. (x,8) = X“(x, 8) - (24)

Just as in the case of the free Dirac field, qéand X of the free super-

field are related through the Dirac equation

(-9 -m)‘g[_r(x,eho . (25)

Finally therefore, imposition of the conditions (25) gives rise to the

following restrictions on the fields contained iniptxﬁ )

3

S”n.z,.v,‘:’ - Pf"-..i:,,A“’
N“’. % g ++:>,.F,f,‘,’ ,. a,,#".yn,

. {a)
w :(3 Voo vE) CTr" i(’%h— »h r)
(26)

both for i=1 and i=2 (cf. labels in (19)). This means that out of the three sets
of fields, one scalar (pseudoscalar), one vector (axial vector) and one pure-
spin-one, only one, say the vector (axial veétor) can be chosen as independent,
thus diﬁinishing the content of the supermultiplet Y .

The above decomposition (19) of the Dirac superfield is the simplest case
of a J-W 2(2jﬁ)~componenﬁ superfield 8) decomposition, to which there will

corespond the more general périty constraints

s

| —y , 16,0 ©(0,3))
(‘X" Mgr&"')l‘ai - m"‘) A2 (x,6) = 0 (27)

where the 2(2j+1) x 2(2j+) spin-matrices vy 1°**"2J as well as their relevant

properties are given in detail in ref. (6).
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2.l Choice of Representation

The question of the choice of the H'L:.G representation according to which
a superfield transforms is an open one just like in the case of space~time-
local fields.

As remarked in Section 1, for a covariant-superfield to contain particles
of spins starting from spin-zero, it must transform according to an I'R of
H'L'G satisfying |A-B| € 1.

Another aspect we comment on is that due to the H-L-G transformation pro-
perties of the Majorana bases (1), it is impossible to avoid component-fields
of the tensor and (generalised) R-S type, even if the superfield itself might
be a J-W type, for example the Dirac superfield considered above. Conversely
& tensor or R-S type superfield will involve component fields of the J-W types,
for example in the vector superfield above the field HP” has an antisymmetric

part G, vhich is essentially a [(1,0) @ (0,1)} J-W representation, namely

CT’w = Q.0 O'U(O,!);:, + 76‘3(0,‘) “p(‘ﬁ);y
@ R = ..L o - ”’
G (o, & {i&\]“, X g;') s (28)

where the symbol {%~%’T] stands for a Clebsch-Gordan coefficient.
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3. Scalar Several—g Superfields

3.1 The Fields

The following construction yields Lorentz scalar superfields that are super-
multiplets of fields of particles with spins ranging from zero to arbitrarily
high values.

We extend the definition of a superfield, by considering fields that are

functions of space-time and in general of n four-component Majorana spinors

9(1), 9(2), ey e(i), cos e(n) which anticommute
S .
fe. ,e‘;’} =0 (29)

for any i and j, from 1...n. We actually require that the corresponding genera-

‘(1>, 5(2),..., s(i),..., s(n)

tors S - of the superéymmetry transformations satis-

fy the following snticommutation relstions
S S )
15,8 3= 0 , i4j

ie;:)) é:i = (XPC-),?‘ Pp . (30)

We further require that each_S(l) satisfy the same commutation relations with

the generators Pu and Juv of the Poincaré group as given in Refs.(2,3). The

supersymmetry transformaetion

(“’ f‘.’ (” Y
6 — 6+ é y 48 LR (31a)

then causes X, to be translated according to

(3

. é= FLL) )
Xp > wps & 2 B (31b)

Following the procedure in Ref. (3), the variations ¢ due to infinitesi-
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mal versions of the transformstions (9), and hence also the form of the
"covariant derivatives", can be calculated. The "covariant derivative" of
each é;) is clearly then of the same form as that for the single 6 supér—

field.

3.2 The Highest Spin Content

Here we do not give complete expansions in a Majorana basis as we did
for covariant-superfields, mainly because the procedure is similar, straight-
forward and cumbersome. Instead we examine the maximum spin content of the
several-8 superfields.

The Majorana bases will consist of a set of the form (14) for each 9(i),
in addition to the bases constructed from several different spinors
9<i), e(j),... (i j# ...). Compared to (14) these new sets of bases will have
more independent members as the restrictions ensuring from the use of identi-
cal spinors @ will be relaxed. To start with, the vector bases e(i)iYue(j) will
be nonzero for i# j.

The maximum power of 8's in the expansion of this superfield will be four
for each type of 6, namely Ln.

Just as in Section 2, each e(i) here is taken as being subject to the Majo-
rana cbnditions (3), vhich results in halving the number of independent elements
‘in the (otherwise spin- %J B!'s, thus the highest (irreducible) spin basis that
can be constructed from n types of 8's is n. In particular for a single ©

scalar superfield(1’2’3)

s the highest spin bases is spin-one. We give a demonstra-—
tion of this below for a two-8 scalar superfield. For simplicity, we use the two-
component formalism.

.Denoting the two spinors by

6:[50n] o 0:[807]

we consider the following bases constructed from both 8's:
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B, = (50;'?')(‘?53'7') (322)
Ba= (7% ) (Jou ') | (32b)

B3=(6“}‘7')(‘T%']) . (32¢)

It follows from the properties (2), (3) and (29) of 6 and 6', and identi-

ties (10) and (11) that

Bl = (E{'}’) (5'3) s,w , (33a)

B, = =(70,9) (Fopn') (33p)
Bye - (TG0 7) + @) (F3Eg) - (33c)

Clearly (33a) carries the H:L+G transformations of a particle of only spin-zero,
(33b) being antisymmetric in u and v carries only séinrone, while (33c) can
carry the transformation of a particle of spin-2.

Thus using a two-8 scalar superfield we can describe particles of spin-2
while with a one-6 scalar superfield one had only up to spin-1. That no higher
spin basis can be constructed with only two 6's is easily checked. For example

multiplying the spin-2 basis B, by (ﬁbln) results (cf. (33b)) in antisymmetry

3

between agll three indices u, v, A, and such a tensor cannot carryr a totally sym-

metric third rank spin-3 tensor field. Multiplying B, by (ﬁbkn‘) on the other

3
hand results (cf. (33a)) in (ffovn )gu)x which could also not carry a spin-3 field.
We make a final remark. Amongst the bases that can be constructed with n

9's are the J-W bases transforming like the I'R (j,o) of H-L.G, for all j up
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to gu For n=2 these are, the (1,0) bases

a1 6 g™

and its parity conjugate, the (0,1) basis

[‘{ ]u-r 76; 7&:’
(i)

With only n types of 8 s 1t is impossible to construct in this manner a non-

° . 1 &Q
1(n+1),0) basis. This follows from (29), the symetry of [231],

vanishing (2

in the interchange of a and a', and the properties of the angular momentum re-—

coupling coefficients.
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